跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 01:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳昱安
研究生(外文):Yu-An Chen
論文名稱:以場效應電晶體檢測分子反應衍生之電偶極距及吸收光譜的變化
論文名稱(外文):Detection of molecular interaction induced changes in the electric dipole moment and absorption spectrum using field effect transistors
指導教授:蔡麗珠蔡麗珠引用關係
指導教授(外文):Li-Chu Tsai
口試委員:陳啟東蘇昭瑾陳逸聰
口試日期:2018-07-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:分子科學與工程系有機高分子碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:49
中文關鍵詞:二價鐵離子3-胺丙基三乙氧基矽烷比爾定律矽場效應電晶體
外文關鍵詞:iron(II) ions3-aminopropyltriethoxysilaneBeer’s lawSilicon Nanowire Field-effect-transistor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要利用半導體的光敏特性探討矽場效應電晶體在分子光譜量測上的應用,並結合原本對於分子電場量測的能力。本實驗選擇顏色及電場變化明顯的二價鐵離子與3-胺丙基三乙氧基矽烷(APTES)反應進行量測。
首先將 APTES 修飾在矽場效應電晶體表面,再加入二價鐵離子溶液進行量測。矽場效應電晶體測得的吸收光譜與一般市售分光光度計的吸收光譜對比後大致相同,且在不同濃度鐵離子(0.1 ~10 mM)的光譜圖中,吸收值會與濃度成正相關。另一方面,在電學檢測上會得到反應前後的電流對電壓圖,實驗結果呈現0.9 μA ~ 2.0 μA的電流變化,電流變化是來自二價鐵離子與APTES反應後電子轉移產生電場變化導致場效應電晶體測量到的電流改變。
相較於市面上的許多光學儀器,本篇論文所使用的檢測方式除了量測到分子吸收光譜,亦可觀察化學反應前後電子轉移所產生的電場變化;以量測吸收光譜及電場變化的性質,使用場效應電晶體在檢測二價鈷跟二價鐵時,有相同的電流變化(1.3μA),因而無法判別是鈷離子或鐵離子,我們卻可從不同的光譜特徵峰區分出鈷離子(590、650nm)、鐵離子(400~450nm),以光譜提高場效應電晶體在金屬離子量測的辨別度。
In this study, the photosensitive property of semiconductor was utilized to explore the application of the field-effect transistor (FET) in molecular spectrometry. This optic spectrometry is an add-on function to its original application in molecular charge sensor. Interaction between Fe2+ and APTES was employed in this proof-of-concept experiment to demonstrate the said add-on function, as this interaction is known to yield prominent changes in both photon absorption as well as molecular electric field.
The experiment was begun with modification of APTES on the surface of the FETS, and then Fe2+ in H2O was added for the interaction under detected. The absorption spectrum measured by using the FETs was consistent to the that obtained by commercial spectrophotometers. Both showed an increased absorption with concentration Fe2+ (0.1 ~ 10 mM). On the FET side, upon interaction the increased from 0.9 μA to 2.0 μA due to a change in the molecular charge.
Compared with other commercial absorption spectroscopes, the proposed FET system provides information about changes in molecular absorption as well as molecular field associated with the molecular interaction. This is particularly useful when the change in the molecular field is the same for interactions of two different specimens. For example, both interactions between APTES-Co2+ and APTES-Fe2+ systems resulted in the same amount (1.3 μA) in the FET current, and it was not possible to distinguish between the two sets of molecular interaction. With the add-on spectrum measurement, we were able to tell the difference from the spectral characteristic peak; The peaks for Co2+ appear at 590 nm and 650 nm, where as for Fe2+ the peaks showed up at 400 nm and 450 nm. We thus illustrated an approach to improve the selectivity of the FET sensors in the detection of metal ions.
摘 要…………………………………………………………………………………… i
ABSTRACT……………………………………………………………………………… iii
誌 謝……………………………………………………………………………………… v
目錄………………………………………………………………………………………vi
圖目錄…………………………………………………………………………………… ix
第一章 前言………………………………………………………………………… 1
第二章 文獻回顧……………………………………………………………… 2
2.1 場效應電晶體………………………………………………………………2
2.1.1 電晶體……………………………………………………………… 2
2.1.2場效應電晶體………………………………………………… 3
2.1.3金屬氧化物場效應電晶體…………………………………………………….. 3
2.1.4奈米矽線場效應電晶體……………………………………………………….. 6
2.1.5奈米矽線場效應電晶體的偵測原理………………………………………….. 7
2.2矽烷偶聯劑…………………………………………………………………………. 9
2.2.1矽烷偶聯劑…………………………………………………………………….. 9
2.2.2矽烷偶合劑在矽場效應電晶體之應用……………………………………….. 10
2.2.3矽烷偶合劑與金屬離子的反應……………………………………………….. 10
2.3德拜屏蔽效應與電雙層……………………………………………………………. 12
2.4光譜學基本原理…………………………………………………………………. 14
2.4.1電磁幅射……………………………………………………………………….. 14
2.4.2吸收光譜……………………………………………………………………….. 14
2.4.3比爾-朗伯定律…………………………………………………………………. 15
2.4.4單光儀………………………………………………………………………….. 16
第三章 實驗方法與流程………………………………………………………………... 18
3.1實驗藥品……………………………………………………………………………. 18
3.2實驗設備與裝置……………………………………………………………………. 18
3.2.1晶片載具和加電場裝置……………………………………………………….. 18
3.2.2操作平台……………………………………………………………………….. 19
3.2.3自製放大器…………………………………………………………………….. 20
3.2.4PDMS微流道製作……………………………………………………………… 21
3.2.5光源載具及單光儀…………………………………………………………….. 21
3.3實驗原理……………………………………………………………………………. 23
3.3.1光學原理……………………………………………………………………….. 23
3.3.2電學原理……………………………………………………………………….. 24
3.4實驗流程…………………………………………………………………...……….. 25
3.5實驗步驟……………………………………………………………………………. 26
第四章 結果與討論…………………………………………………......………………. 28
4.1APTES分析…………………………………………………………………………. 28
4.2APTES與金屬離子吸收光譜………………………………………………………. 29
4.3場效應電晶體的光學量測…………………………………………………………. 30
4.3.1觀察P-type場效應電晶體對光的變化……………………………………….. 30
4.3.2以P-type場效應電晶體對不同金屬離子進行測量………………………….. 30
4.3.3以N-type場效應電晶體進行可見光吸收光譜的量測………………………. 34
4.3.4討論為何P-type場效應電晶體照光後電流下降……………………………. 38
4.4場效應電晶體的電性量測…………………………………………………………. 39
4.4.1以P-type場效應電晶體對不同金屬離子進行電性測量…………….………. 39
4.4.2以N-type場效應電晶體對修飾前後及鐵離子反應後進行電性測量……… 39
4.5討論………………………………………………………………………………… 41
4.5.1討論結果……………………………………………………………………….. 42
結 論……………………………………………………………………………………... 46
參考文獻…………………………………………………………………………………... 47
1.Continetti, R.E., D.R. Cyr, and D.M. Neumark, Fast 8 kV metal–oxide semiconductor field‐effect transistor switch. Review of Scientific Instruments, 1992. 63(2): p. 1840-1841.
2.Fox, A., et al., Advanced Heterojunction Bipolar Transistor for Half-THz SiGe BiCMOS Technology. IEEE Electron Device Letters, 2015. 36(7): p. 642-644.
3.Curtice, W.R. and M. Ettenberg, A Nonlinear GaAs FET Model for Use in the Design of Output Circuits for Power Amplifiers. IEEE Transactions on Microwave Theory and Techniques, 1985. 33(12): p. 1383-1394.
4.Antognetti, P. and G. Massobrio, Semiconductor Device Modeling with Spice. 1990: McGraw-Hill, Inc. 416.
5.Sakurai, T. and A.R. Newton, A simple MOSFET model for circuit analysis. IEEE Transactions on Electron Devices, 1991. 38(4): p. 887-894.
6.Stevanovic, L., et al. High performance SiC MOSFET module for industrial applications. in 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD). 2016.
7.Zhang, A., G. Zheng, and C.M. Lieber, Nanowire Field-Effect Transistor Sensors, in Nanowires: Building Blocks for Nanoscience and Nanotechnology, A. Zhang, G. Zheng, and C. M. Lieber, Editors. 2016, Springer International Publishing: Cham. p. 255-275.
8.Livi, P., et al., Monolithic Integration of a Silicon Nanowire Field-Effect Transistors Array on a Complementary Metal-Oxide Semiconductor Chip for Biochemical Sensor Applications. Analytical Chemistry, 2015. 87(19): p. 9982-9990.
9.Penzo, E., et al., Directed Assembly of Single Wall Carbon Nanotube Field Effect Transistors. ACS Nano, 2016. 10(2): p. 2975-2981.
10.Ruixuan, D., et al., Adjustable hydrazine modulation of single-wall carbon nanotube network field effect transistors from p-type to n-type. Nanotechnology, 2016. 27(44): p. 445203.
11.Xie, Y., et al., Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 2010. 41(7): p. 806-819.
12.Namvar-Mahboub, M. and M. Pakizeh, Development of a novel thin film composite membrane by interfacial polymerization on polyetherimide/modified SiO2 support for organic solvent nanofiltration. Separation and Purification Technology, 2013. 119: p. 35-45.
13.Yu, L.Q. and X.P. Yan, Covalent bonding of zeolitic imidazolate framework-90 to functionalized silica fibers for solid-phase microextraction. Chem Commun (Camb), 2013. 49(21): p. 2142-4.
14.Gu, H., et al., Effect of interphase and strain-rate on the tensile properties of polyamide 6 reinforced with functionalized silica nanoparticles. Composites Science and Technology, 2013. 75: p. 62-69.
15.Gao, J., et al., In situ solvothermal synthesis of metal–organic framework coated fiber for highly sensitive solid-phase microextraction of polycyclic aromatic hydrocarbons. Journal of Chromatography A, 2016. 1436: p. 1-8.
16.Mondal, M., et al., Suzuki–Miyaura Cross-Coupling in Aqueous Medium Using Recyclable Palladium/Amide-Silica Catalyst. Catalysis Letters, 2016. 146(9): p. 1718-1728.
17.Antony, R., et al., Organic-inorganic hybrid catalysts containing new Schiff base for environment friendly cyclohexane oxidation. RSC Advances, 2014. 4(81): p. 42816-42824.
18.Mureseanu, M., et al., Modified SBA-15 mesoporous silica for heavy metal ions remediation. Chemosphere, 2008. 73(9): p. 1499-1504.
19.Lee, B., et al., Synthesis of functionalized porous silicas via templating method as heavy metal ion adsorbents: the introduction of surface hydrophilicity onto the surface of adsorbents. Microporous and Mesoporous Materials, 2001. 50(1): p. 77-90.
20.Jeong, U., H.H. Shin, and Y. Kim, Functionalized magnetic core–shell Fe@SiO2 nanoparticles as recoverable colorimetric sensor for Co2+ ion. Chemical Engineering Journal, 2015. 281: p. 428-433.
21.Gomes, H.I.A.S. and M.G.F. Sales, Development of paper-based color test-strip for drug detection in aquatic environment: Application to oxytetracycline. Biosensors and Bioelectronics, 2015. 65: p. 54-61.
22.Y DAVID E. YATES, S.L.A.T.W., . OXIDE/AQUEOUS ELECTROLYTE INTERFACE, 1973.
23.Choi, N.S., et al., Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed Engl, 2012. 51(40): p. 9994-10024.
24.Schmidt, E., et al., Characterization of the Electric Double Layer Formation Dynamics of a Metal/Ionic Liquid/Metal Structure. ACS Applied Materials & Interfaces, 2016. 8(23): p. 14879-14884.
25.Zukoski, C.F. and D.A. Saville, The interpretation of electrokinetic measurements using a dynamic model of the stern layer: I. The dynamic model. Journal of Colloid and Interface Science, 1986. 114(1): p. 32-44.
26.Stern, E., et al., Importance of the Debye Screening Length on Nanowire Field Effect Transistor Sensors. Nano Letters, 2007. 7(11): p. 3405-3409.
27.Vacic, A., et al., Determination of Molecular Configuration by Debye Length Modulation. Journal of the American Chemical Society, 2011. 133(35): p. 13886-13889.
28.Winokur, M.J., et al., Structural and absorption studies of the thermochromic transition in poly(3-hexylthiophene). Synthetic Metals, 1989. 28(1): p. 419-426.
29.Perepichka Dmitrii, F. and R. Bryce Martin, Molecules with Exceptionally Small HOMO–LUMO Gaps. Angewandte Chemie International Edition, 2005. 44(34): p. 5370-5373.
30.Georges, J., Deviations from Beers law due to dimerization equilibria: theoretical comparison of absorbance, fluorescence and thermal lens measurements. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1995. 51(6): p. 985-994.
31.Komiyama, S., et al., A single-photon detector in the far-infrared range. Nature, 2000. 403: p. 405.
32.Hess, S.T., et al., Biological and Chemical Applications of Fluorescence Correlation Spectroscopy:  A Review. Biochemistry, 2002. 41(3): p. 697-705.
33.Baumgartel, T., C. von Borczyskowski, and H. Graaf, Selective surface modification of lithographic silicon oxide nanostructures by organofunctional silanes. Beilstein J Nanotechnol, 2013. 4: p. 218-26.
34.Syamchand, S.S., R.S. Aparna, and S. George, Surface Engineered Ho3+ Incorporated Fluorescent Dye-Doped Bifunctional Silica Nanoparticles for Receptor Targeted Fluorescence Imaging and Potential Magnetic Resonance Imaging. Journal of Fluorescence, 2017. 27(5): p. 1897-1908.
35.Feng, Z., et al., Three-dimensional direct visualization of silica dispersion in polymer-based composites. Analyst, 2018. 143(9): p. 2090-2095.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top