跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/14 10:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳威羽
研究生(外文):Wei-Yu Chen
論文名稱:地下車站應用撒水器對火災環境影響之數值模擬研究
論文名稱(外文):Numerical Study on the Environmental Influence by Using Sprinkler in Underground Station Fire
指導教授:柯明村
口試委員:胡耀祖鄭鴻斌李佳言
口試日期:2014-07-14
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系碩士班
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:71
中文關鍵詞:撒水系統噴霧降溫FDS
外文關鍵詞:Water sprinkler systemSpray coolingFDS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要以數值方法來模擬地下車站架設消防撒水系統所造成的溫度、能見度、一氧化碳濃度變化,並改變水量、粒徑、排風機風量,探討這些參數之改變對車站發生火災時所造成的影響。本文採用計算流體力學軟體FDS來進行計算,模擬模型藉由實際施工平面圖來建立,並利用防煙垂壁區分各個火場區塊進行探討,網格則採用六面體網格將計算區域離散化,數目約70萬。火源大小的確立是參考文獻中提及,平均一人可攜帶20公升之汽油,其六分鐘內燃燒完成之熱釋放率為3.6MW;風機開啟時機,採用定址偵煙光電式偵煙探測器,並設定其偵測到能見度低於20公尺時開啟;撒水器作動時機為撒水器位置偵測到溫度大於68℃時。結果顯示,改變撒水器參數皆不會影響排煙系統開啟時間;改變撒水器水量時,水量增加降溫效果越好,且由偵測點數據顯示80LPM為48.1℃、100LPM為46.7℃、120LPM為45.1℃,但水量過大可能會產生水害,對後續復原造成難度。噴霧粒徑的大小主要影響的因素是水滴的蒸發速率,粒徑越大吸熱速度較慢,其火場升溫會比較快,400μm為49.1℃、100μm為48.1℃、50μm為47.5℃,雖然粒徑越小降溫效果越好,但其噴嘴成本高,因此需要考量成本問題。改變排風量則是最有效增加能見度、降低高溫濃煙累積與降低一氧化碳濃度的方式,火場溫度在排風量30CMS為42.0℃、60CMS為38.8℃、90CMS為35.5℃,且每增大30CMS約可增加30秒的逃生時間,但若無限制的加大排風量是否會造成其他影響還需進一步討論。

The purpose of this study is to simulate the effect on changes of temperature and visibility and Carbon monoxide concentration which coursed by sprinkler system in underground station by numerical method. Besides, change water quantity, particle diameter , exhaust airflow to investigates the changes of variable of the influences in underground station fire. This study adopted Computational fluid dynamics software FDS. The simulated model is built from the real construction plan and utilize smoke barrier to separate the fire district. Besides approximately 700,000 Hex Mesh are used to calculate the discrete fire area. The size of fire is referred to the reference, one person can carry 20 liter of gas which the rate of heat release is 3.6MW within six minutes. The moment to be set to turn on the Blow is when the Addressable Photoelectric Smoke Detector’s visibility is deteriorated below 20m. Moreover, when the sensor detect the temperature higher than 68℃, sprinkler will be turned on. The result shows that the variable of sprinkler’s changes do not influence the time to turn on the exhaust system. When the sprinkler’s water quantity increase, the effect of cooling is better. According to the data of sensor shows that 80LPM is 48.1℃, 100LPM is 46.7℃and 120LPM is 45.1℃. However, excessive water quantity may cause flood and hard to repair. The size of spray particle is mainly influenced by rate of water evaporation. The bigger particle slow down the rate of heat absorption which caused the temperature rise rapidly in fire. 400μm is 49.1℃, 100μm is 48.1℃and 50μm is 47.5℃. Although the small particle’s effect of cooling is better than big one, the nozzle, spray small particle, cost more money. So the costs need to be considered. By changing amount of exhaust airflow is the most effective way to increase the visibility, reduce amount of high temperature smoke and Carbon monoxide concentration. The relationship between amount of exhaust airflow and fire field temperature are: 30CMS is 42.0℃, 60CMS is 38.8℃and 90CMS is 35.5℃. Moreover, increasing 30CMS approximately create 30 seconds to escape. However, it need to investigate more that unlimited increasing exhaust airflow whether cause other influences.

摘 要 i
ABSTRACT ii
致 謝 iv
目 錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 研究方法 4
1.4 論文架構 5
第二章 理論分析 6
2.1 火源發展趨勢與設計 6
2.2 煙層流動特性 8
2.3 撒水頭的作動原理 9
2.4 水顆粒之狀態變化 11
2.5 撒水器之水滴軌跡 12
2.6 撒水器之水滴熱傳方程式 15
第三章 CFD模擬理論 17
3.1 FDS數值方法與架構 17
3.2 FDS之守恆方程式 19
3.3 FDS之熱輻射模式 21
3.4 FDS之燃燒模式 22
3.5 FDS之熱邊界條件 24
第四章 物理模型設定 26
4.1 車站建模 26
4.2 火源熱釋放率與位置設定 33
4.3 排煙系統與撒水頭設定 34
4.4 網格獨立性測試 38
4.5 自然對流對車站之影響 39
第五章 結果與討論 40
5.1 有無裝設撒水器結果分析 41
5.2 改變流量結果分析 45
5.3 改變粒徑結果分析 51
5.4 改變排風量分析 57
第六章 結論與建議 62
6.1 結論 62
6.2 建議與未來展望 64
參考文獻 65
符號表 68


[1]R. Carvel,“ The effect of ventilation on fires in tunnel”, International Tunnnel Fire & Safety Conference ,Rotterdam ,The Netherlands,2-3rdDecember 1999.
[2]Floyd, J.E., Wieczorek, C. and Vandsburger, U.,“Simulation of the Virginia Tech Fire.
[3]Zhang, W., Andrew Hamer, Michael Klassen, Douglas Carpenter, Richard Roby ,“Turbulence statistics in a Fire Room Model by Large Eddy Simulation,” Fire Safety Journal 37 pp.721-752. , 2002.
[4]Y.L.Deng,X.Mi,S.M.Zhu, ” Study on Feasibility of Automatic Sprinkler System Applied in Underground Tunnel” Procedia Engineering,2013.
[5]G. Grant , J. Brentonb, D. Drysdale, “Fire suppression by water sprays“ Progress in Energy and Combustion Science,2000
[6]Heskestad G, “Model study of automatic smoke and heat vent performance in sprinklered fires”, Factory Mutual Research Corporation Technical Report FMRC Serial no.21933 RC74-T-29. Norwood, Massachusetts,FMRC, 1974.
[7]Factory Mutual Engineering Corporation, “Heat Vents and Fire Curtains,Effect in Operation of Sprinklers and Visibility”, Factory Mutual Research Corporation, Norwood MA,1956.
[8]Bullen,M.L.The effect of a sprinkler on the stability of a smoke layer beneath a ceiling,Fire Research Note 1066,Fire Research Station,U.K.,1974
[9]V. Babrauskas, The SFPE Handbook of FIRE PROTECTION ENGINEERING.
[10] S.Simcox, N.s. Wilkers & I.P. Jones, “Computer Simulation of the Flows of Hot Grases from the fire at King’s Cross Underground Station”, Fire Safety Journal,Vol.18, pp. 49~73,1992.
[11]R.O.Carval, A.N. Beard, P.W. Jowitt, D.D. Drxsdale, “Variation of heat release rate with forced longitudinal ventilation for vehicle fires in tunnels”, Fire Safety Journal, Vol. 36, pp. 569~296, 2001.
[12]鐘基強, "建築火災煙控性能提升之研究原有合法建築物防火避難空間防煙改善技術與驗證之研究", 財團法人中華建築中心, 2005.
[13]顏世錫, 倪秋煌, 陳弘毅, 黃彼得, 楊逸詠, 陳火炎, "地下建築物防災設計準則之研究", 中央警官學校消防學系, 1990.
[14]蔡政宏, "台鐵臺北車站避難逃生時間計算評估之研究", 中華大學建築與都市計畫學系碩士論文, 2002.
[15]林啟基, "地下車站電聯車活塞效應模擬"
[16]日本建設省, "日本建設省告示第1441號 有關避難安全檢證法計算方法之規定檔", 2000
[17]簡賢文, 沈子勝, 楊艷禾, "建築物火災避難安全及煙控性能式設計法之研究(二)----避難安全性能設計法部分", 內政部建築研究所, 1999
[18]黃國倫, "捷運地下車站與隧道火場CFD煙控模擬方式之探討",中興工程第92期,2006.
[19]內政部營建署, "建築技術規則", 2002
[20]內政部消防署, "消防法", 2000
[21]內政部消防署, "消防法施行細則",2002
[22]Heskestad, G. and Smith, H. F.,Plunge test for determination of sprinkler sensitivity. FMRC 3A1E2. RR, Factory Mutual Research Corporation, Norwood MA,December 1980.
[23]Heskestad, G. and Bill, R. B., Conduction heat-loss effects on thermal response of automatic sprinklers. ,Factory Mutual Research Corporation. Norwood. MA, September 1987.
[24]Morsi and Alexander, ”An Investigation of Particle Trajectories in Two-Phase Flow System ”J.Fluid Mech.,55(2):193-208,September26 1972
[25]V. Betta, F. Cascetta, M. Musto, G. Rotondo, ” Fluid dynamic performances of traditional and alternative jet fans in tunnel longitudinal ventilation systems” Tunnelling and Underground Space Technology,2010.
[26]W. Ranz and W. Marshall, ” Evaporation from drops, Part I”, Chemical Engineering Progress,1952
[27]W. Ranz and W. Marshall, ” Evaporation from drops, Part II”, Chemical Engineering Progress,1952
[28]Forney, G.P. and McGrattan, K.B., “User’s Guide for Smokeview Version 4 - A Tool for Visualizing Fire Dynamics Simulation Data”, NIST Special Publication 1017, Aug. 2004.
[29]趙灝, "挑高中庭建築避難與煙控系統性能式設計驗證評估",台灣大學機械工程研究所碩士論文.2003.
[30]柯明村、章永強,"隧道噴霧降溫之數值模擬",國立臺北科技大學能源與冷凍空調工程系碩士學位論文,2013年。
[31]Yuh-Ming Ferng, Cheng-Hong Liu,”Numerically investigating fire suppression mechanisms for the water mist with various droplet sizes through FDS code”, Nuclear Engineering and Design ,2011.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top