1.D. W Aha, Lazy Learning, Washington D.C., USA: Springer Science+Business Media, 1997.
2.K. Bache and M. Lichman,「Iris Data Set」,UCI Machine Learning Repository,http://archive.ics.uci.edu/ml/datasets/Iris,1988,2014年12月造訪。
3.Chen, C.-L, &;quot;A Study of Patients with Higher Medical Expenses in DRG 124 - A Regional Hospital as Case,&;quot; 2014 International Symposium on Computer, Consumer and Control, Taichung, 2014, pp. 938-941.
4.S. D. Culler, D. S. Jevsevar, K. G. Shea, K. K.Wright, and A. W. Simon, &;quot;The Incremental Hospital Cost and Length-of-Stay Associated with Treating Adverse Events Among Medicare Beneficiaries Undergoing TKA,&;quot; The Journal of Arthroplasty, 2014.
5.J. E. Dayhoff and J. M. DeLeo, &;quot;Artificial Neural Networks Opening the Black Box,&;quot; Conference on Prognostic Factors and Staging in Cancer Management: Contributions of Artificial Neural Networks and Other Statistical Methods. Arlington, Virginia: American Cancer Society, 2001, pp. 1615-1635.
6.M. Fathi, M. Mohebbi, and S. M. Razavi, &;quot;Application of Image Analysis and Artificial Neural Network to Predict Mass Transfer Kinetics and Color Changes of Osmotically Dehydrated Kiwifruit,&;quot; Food Bioprocess Technol, no.4, 2011, pp. 1357-1366.
7.Z. Ghahramani, Unsupervised Learning. In Advanced Lectures on Machine Learning. London, UK: Springer-Verlag, 2004.
8.E. Grossi, A. Mancini and M. Buscema, &;quot;International experience on the use of artificial neural networks in gastroenterology,&;quot; Digestive and Liver Disease, vol.39, no.3, 2007, pp. 278-285.
9.HebbDonald, The Organization of Behavior, New York: Wiley &; Sons, 1949.
10.R. Hecht-Nielsen, &;quot;Theory of the Backpropagation Neural Network,&;quot; International Joint Conference on Neural Networks, Washington, DC, 1989, pp. 593-605.
11.IBM, SPSS Statistics 21 Help Documentation, USA: IBM Corporation, 2012.
12.D. P. Janssen, L. Noyez, C. Wouters and R. M. Brouwer, &;quot;Preoperative prediction of prolonged stay in the intensive care unit for coronary bypass surgery,&;quot; European Journal of Cardio-thoracic Surgery, vol.25, 2004, pp.203-207.
13.Q. Jarosz,「Neuron Hand-tuned」,Wikipedia,http://commons.wikimedia.org/wiki/File:Neuron_Hand-tuned.svg,2009,2014年11月造訪。
14.T. Kohonen, &;quot;The Self-Organizing Map,&;quot; Proceedings of the IEEE, vol.78, no.9, 1990, pp. 1464-1480.
15.S. B. Kotsiantis, &;quot;Supervised Machine Learning: A Review of Classification Techniques,&;quot; Informatica, vol.39, pp. 249-268.
16.T.-S. Lim, W.-Y. Loh, and Y.-S. Shih, &;quot; A Comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms,&;quot; Machine Learning, 2000, pp.203-228.
17.C.-L. Lin, P.-H Lin, L.-W Chou, S.-J. Lan, N.-H. Meng, S.-F. Lo, and H.-D. I. Wu, &;quot;Model-based Prediction of Length of Stay for Rehabilitating Stroke Patients,&;quot; Journal of the Formosan Medical Association, vol.108, no.8, 2009, pp. 653-662.
18.MathWorks,「Multilayer Neural Network Architecture」,MathWorks Documentation,http://www.mathworks.com/help/nnet/ug/multilayer-neural-network-architecture.html,2015,2015年6月造訪。
19.A. McAfee, E. and Brynjolfsson, &;quot;Big Data: The Management,&;quot; Harvard Business Review, 2012, pp. 59-68.
20.W. S. Mcculloch, and W. Pitts, &;quot;A Logical Calculus of the Ideas Immanent in Nervous Activity,&;quot; Bulletin of Mathmatical, Biophysics, vol.5, no.4, 1943, pp. 115-133.
21.M. F. Meller, &;quot;A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning,&;quot; Neural Networks, no.6, 1993, pp. 525-533.
22.A. Mellit, and A. M. Pavan, &;quot;A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy,&;quot; Solar Energy, vol.84, 2014, pp. 807-821.
23.M. R. Mickey, O. J. Dunn, and A. V. Clark, &;quot;Note on the Use of Stepwise Regression in Detecting Outliers,&;quot; Computers and Biomedical Research, no.1, 1966, pp. 105-111.
24.B. A. Mobley, R. Leasure, and L. Davidson, &;quot;Artificial neural network predictions of lengths of stay,&;quot; HEART &; LUNG, 1995, pp. 251-256.
25.K. H. Nagarsheth, S. S. Gandhi, R. E. Heidel, S. J. Kurek, and C. Angel, &;quot;A Mathematical Model to Predict Length of Stay in Pediatric ATV Accident Victims,&;quot; Journal of Surgical Research, vol.171, 2011, pp. 28-30.
26.F. Rosenblatt, &;quot;The Perceptron: A Probalistic Model For Information Storage And Organization In The Brain,&;quot; Psychological Review, vol.65, no.6, 1958, pp. 386-408.
27.D. E. Rumelhart, G. E. Hinton, and R. J. Williams, &;quot;Learning Internal Representations by Error Propagation,&;quot; Parallel distributed processing: Explorations in the microstructure of cognition, vol. 1, 1986, pp. 319-361.
28.T. M. Schmelzer, A. E. Gamal Mostafa, S. M. Camp, K. W. Kercher, T. S. Kuwada, and B. T. Heniford, &;quot;Factors Affecting Length of Stay Following Colonic Resection,&;quot; Journal of Surgical Research, vol.146, 2008, pp. 195-201.
29.N. Spratt, Y. Wang, C. Levi, K. Ng, M. Evans, and J. Fisher, &;quot;A Prospective Study of Predictors of Prolonged Hospital Stay and Disability After Stroke,&;quot; Journal of Clinical Neuroscience, vol.10, no.6, 2003, pp. 665-669.
30.P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining. Boston, USA: Pearson Education, 2006.
31.P. J. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University, Cambridge, 1974.
32.D. J. Whellan, X. Zhao, A. F. Hernandez, L. Liang, E. D. Peterson, D. L. Bhatt, G. C. Fonarow, &;quot;Predictors of Hospital Length of Stay in Heart Failure: Findings from Get With the Guidelines,&;quot; Journal of Cardiac Failure, vol.17, no.8, 2011, pp. 649-656.
33.Yu-Hsin Liu, Y.-C. C., &;quot;Impact of the Diagnosis Related Groups Prospective Payment System on the Profitability of Hospitals in Taiwan,&;quot; Journal of Medicine and Health, vol.2, no.2, 2013, pp. 23-34.
34.內政部統計處,「統計報告─重要參考指標」,內政部統計處網站,http://www.moi.gov.tw/stat/index.aspx,2014,2014年12月造訪。
35.宋晧遠,應用類神經網路在入院階段預測心血管患者住院天數,碩士論文,國立台北科技大學工業工程與管理系,台北市,2012。36.郭仕堯、蕭樂群、張原賓,「類神經網路於飛航網路運量預測之應用」,航空、太空及民航學刊系列,第四十二卷,第一期,2010,第67-72頁。
37.黃宏斌,高雄港轉口貨櫃運量預測之研究─以類神經網路為預測模式,碩士論文,國立海洋大學航運管理學系,基隆市,2001。38.蔡惠喻、余銘忠,高雄港轉口貨櫃量之運量預測,碩士論文,國立高雄應用科技大學企業管理研究所,高雄市,2012。39.衛生福利部中央健康保險署,「102年全民健康保險統計」,
衛生福利部中央健康保險署網站, http://www.nhi.gov.tw/webdata/webdata.aspx?menu=17&;menu_id=1023&;WD_ID=1043&;webdata_id=4639,2014,2014年10月造訪。
40.衛生福利部中央健康保險署,「主題專區─DRGs支付制度」,
衛生福利部中央健康保險署網站, http://www.nhi.gov.tw/webdata/webdata.aspx?menu=17&;menu_id=1027&;webdata_id=937,2014,2014年10月造訪。