跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/07 17:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林敬彬
研究生(外文):Jing-bin Lin
論文名稱:水產品加工技術研究
論文名稱(外文):Aquatic products processing technology research
指導教授:楊景雍楊景雍引用關係
指導教授(外文):Jing-Iong Yang
口試委員:李國基廖宏儒鄧景浩張學偉
口試委員(外文):Guo-Chi LeeHung-Ju LiaoChing-Hao TengHsueh-Wei Chang
口試日期:2014-07-24
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:水產食品科學研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:155
中文關鍵詞:魚粉益生菌大豆粕金目鱸吳郭魚魚卵酵素水解抑制酪胺酸酶活性
外文關鍵詞:fish mealprobioticssoybean mealgiant seaperchtilapiaroeenzymatic hydrolysistyrosinase inhibitory activity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:617
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
第一部分
本研究目的為探討以益生菌發酵大豆粕,依不同比例來取代魚粉做為飼料。以不同取代配方飼料分別餵養吳郭魚和鱸魚,探討對其成長之影響。本研究之控制組飼料以市售魚粉為飼料中蛋白質來源;而實驗組分為兩部分,第一是六組分別是以未發酵大豆粕取代20%及40%魚粉、A菌發酵大豆粕及P菌發酵大豆粕之來飼育吳郭魚,分別簡稱為SBM20、SBM40、FLA20、FLA40、FLP20與FLP40;另一是以A菌發酵大豆粕取代15%、30%及45%之魚粉來飼育金目鱸,分別簡稱為FLA15、FLA30及FLA45,進行六十天的飼育試驗。吳郭魚和金目鱸飼育試驗結果以存活、成長狀況(增重、增重百分比、比生長率)、飼料消化利用(飼料轉換率、飼料效率)及體內組成。由結果顯示吳郭魚在增重及內臟身體比皆以 SBM20 最佳,成長狀況以控制組飼料為最佳,而飼料消化利用以FLP20最佳。而金目鱸在增重、內臟身體比及肝體比是以控制組飼料最佳,而成長狀況則以 FLA15 為最佳,飼料消化利用則以 FLA30 最佳。另外,胺基酸組成中之必需胺基酸含量皆為 FLA30 為最高。

第二部分
本實驗目的是將魚卵經酵素水解後,進行脫脂製成魚卵水解物 (roe hydrolyzate, RH),然後進行純化。首先,以陰離子交換管柱進行區分,再以膠體過濾層析(G-25)進行分離純化,結果以A區區分物之抑制酪胺酸酶活性最佳,達到78.20 % 抑制效果。最後以高效液相層析為C18管柱將A區區分物進一步的分離,進行純化抑制酪胺酸酶活性胜肽之胺基酸定序。
PartⅠ.
The purpose of this study was to explore the replacement of fish meal with the probiotic fermented soybean meals as feed and to investigate the effects of different feeds on the growth of tilapia and giant seaperch (Lates calcarifer). There were two animal experiments. The tilapia feeds, comprising widely available and affordable raw ingredients, were iso-energetic and iso-carbohydrated, but contained protein of different sources as follows: 100% of protein from fishmeal, protein from fishmeal (80 or 60%) plus from soybean meal (20 or 40%), protein from fishmeal (80 or 60%) plus from bacterium A fermented soybean meal (20 or40%), and protein from fishmeal (80 or 60%) plus from bacterium P fermented soybean meal (20 or40%). They were called control, FLA20, FLA40, FLP20, FLP40, SBM20, and SBM40 groups, respectively. The giant seaperch feeds contained protein of different sources as follows: 100% of protein from fishmeal (control), 85% of protein from fishmeal and 15% of protein from bacterium A fermented soybean meal (FLA15), 70% of protein from fishmeal and 30% of protein from bacterium A fermented soybean meal (FLA30), and 55% of protein from fishmeal and 45% of protein from bacterium A fermented soybean meal (FLA45). Both two experiments were conducted 60-day feed trials. The survival rate, growth performance (weight gain, percentages weight gain, specific growth rate), feed digestion (feed conversion rate, feed efficiency) and body composition of two fish groups were investigated. The results indicate that SBM20 group exhibited the highest weight gain and visceral somatic index among tilapia groups. Control diet demonstrated the best growth performance. FLP20 demonstrated the best feed digestion and utilization with the experimental diets. In the seaperch experiment, the control group exhibited the highest weight gain, visceral somatic index and hepatosomatic index among seaperch group. FLA15 and FLA30 group exhibited the best growth performance and the best feed digestion and utilization among all group, respectively. In addition, the amount of essential amino acids in amino acid composition of FLA30 is the highest among all groups.

PartⅡ.
In this experiment, roe hydrolysate (RH) was produced from roes treated with enzymatic hydrolysis and defatting. To screen peptides with tyrosinase inhibitory activity, RH was fractionated and purified by anion exchange chromatography and then gel filtration (G-25) chromatography. A fraction with 78.20% tyrosinase inhibitory activity was obtained. Finally C18 HPLC column was used for further separation. A tyrosinase inhibitory peptide was purified and its amino acid sequence. Tyrosinase inhibitory peptides can be used in the development of skin care products.
摘要-第一部分 I
摘要-第二部分 II
Abstract III
PartⅠ. III
PartⅡ. V
誌謝 VI
目錄 VIII
表目錄 XV
圖目錄 XVI
附目錄 XIX
符號說明 XX
壹、前言 1
第一部分、發酵大豆取代部分魚粉之飼料配方開發 1
第二部分、魚卵水解物抑制酪胺酸酶活性探討 3
貳、文獻整理 4
第一部分、發酵大豆取代部分魚粉之飼料配方開發 4
一、吳郭魚簡介 4
(一) 吳郭魚之分類 5
(二) 吳郭魚之特性 7
(三) 吳郭魚之養殖概況 7
二、金目鱸簡介 8
(一) 金目鱸之分類 8
(二) 金目鱸之特性與生態 9
(三) 金目鱸之養殖概況 10
三、魚粉 (Fish meal) 的近況 11
四、大豆粕 (Soy Bean Meal, SBM) 簡介 12
五、益生菌 (Probiotics) 簡介 18
六、Lactobacillus乳酸菌屬 20
第二部分、魚卵水解物抑制酪胺酸酶活性探討 21
一、黑色素 (Melanin) 之形成 21
参、材料與方法 23
第一部分、發酵大豆取代部分魚粉之飼料配方開發 23
一、實驗材料 24
1. 材料來源 24
2. 實驗藥品 25
3. 儀器設備 28
二、實驗方法 30
1. 大豆粕(Soybean meal, SBM)前處理 30
1.1 蒸煮大豆粕製備 30
1.2 未發酵大豆粕(SBM)之製備 30
1.3 發酵大豆粕(Fermented soybean meal, FSBM)預製備 30
1.3.1 MRS broth 培養液製備 30
1.3.2 發酵工作液製備 32
1.4 發酵大豆粕 (FSBM) 製備 32
2. 一般成分分析 34
2.1 水分 (Moisture) 34
2.2 灰分 (Ash) 35
2.3 粗蛋白 (Crude protein) 35
2.4 粗脂肪 ( Crude fat ) 36
3. 吳郭魚飼育試驗 38
3.1 實驗用魚 38
3.2 實驗方法 38
3.2.1 飼育動物及環境條件 38
3.2.2 吳郭魚飼料配方及製備 39
3.3 魚體資料分析 42
3.4 魚體組織分析 43
3.4.1 一般成分分析 43
4. 金目鱸飼育試驗 45
4.1 實驗用魚 45
4.2 實驗方法 45
4.2.1 飼育動物與環境條件 45
4.2.2 金目鱸飼料配方及製備 46
4.3 魚體資料分析 48
4.4 魚體組織分析 48
第二部分、魚卵水解物抑制酪胺酸酶活性探討 50
1. 魚卵 (Roe) 前處理 51
2. 魚卵水解物 (Roe hydrolyate, RH) 51
3. RH純化 51
3.1 快速蛋白質液相層析 52
3.1.1 陰離子交換層析 52
3.1.2 膠體過濾層析 53
3.2 高效液相層析 (High performance liquid chromatography, HPLC) 54
3.2.1 C18 半製備型和分析型管柱 54
3.3 胺基酸定序 55
4. 抗酪胺酸酶活性測定 56
5. 統計分析 57
肆、結果與討論 58
第一部分、發酵大豆取代部分魚粉之飼料配方開發 58
一、 實驗飼料一般成分分析 58
二、吳郭魚飼育實驗之成長表現 61
(一) 吳郭魚餵食實驗飼料60天後之存活率(%) 61
(二)吳郭魚餵食實驗飼料60天後之增重 63
(三)吳郭魚餵食實驗飼料60天後之增重百分比 (PWG) 65
(四)吳郭魚餵食實驗飼料60天後之飼料轉換率(FCR) 67
(五)吳郭魚餵食實驗飼料60天後之飼料效率 (FE) 69
(六)吳郭魚餵食實驗飼料60天後之比生長率 (SGR) 71
(七)吳郭魚餵食實驗飼料60天後之肌肉率(MR) 73
(八)吳郭魚餵食實驗飼料60天後之內臟比 (VSI) 75
(九)吳郭魚餵食實驗飼料60天後之肝體比 (HSI) 77
(十)吳郭魚餵食實驗飼料60天後之魚體組織成分 79
(十一)吳郭魚餵食實驗飼料60天後之魚體胺基酸分析 81
三、金目鱸飼育實驗之成長表現 83
(一) 金目鱸餵食實驗飼料 60天後之存活率 83
(二) 金目鱸餵食實驗飼料 60天後之增重 (WG) 85
(三) 金目鱸餵食實驗飼料 60天後之增重百分比 (PWG) 87
(四) 金目鱸餵食實驗飼料 60天後之飼料轉換率(FCR) 89
(五) 金目鱸餵食實驗飼料 60天後之飼料效率(FE) 91
(六) 金目鱸餵食實驗飼料 60天後之比生長率 (SGR) 93
(七) 金目鱸餵食實驗飼料 60天後之肌肉率 (MR) 95
(八) 金目鱸餵食實驗飼料 60天後之內臟身體比 (VSI) 97
(九) 金目鱸餵食實驗飼料 60天後之肝體比 (HSI) 99
(十) 金目鱸餵食實驗飼料 60天後之魚體組織分析 101
(十一) 金目鱸餵食實驗飼料 60天後之魚體胺基酸分析 103
第二部分、魚卵水解物抑制酪胺酸酶活性探討 105
一、 RH 陰離子交換層析及膠體過濾層析區分物純化之探討 105
二、 純化 RH 區分物之抗酪胺酸酶活性探討 109
(一) RHⅡA 之抗酪胺酸酶活性探討 114
伍、結論 117
第一部分、發酵大豆取代部分魚粉之飼料配方開發 117
第二部分、魚卵水解物抑制酪胺酸酶活性探討 118
陸、參考文獻 119
中文文獻 119
英文文獻 123
柒、附錄 130

中文文獻

台灣魚類資料庫,2014
http://fishdb.sinica.edu.tw/
CME group
http://www.cmegroup.com/trading/agricultural/
Worldbank
http://data.worldbank.org/data-catalog/commodity-price-data
Index mundi
http://www.indexmundi.com/commodities/?commodity=fish-meal&months=300
台灣漁類資料庫-臺灣魚纇知識庫,2013
http://fishkdb.biodiv.tw/1a.html

廖宣銘 (2007). 麴菌Aspergillus oryzae生產蛋白質分解酵素及其利用於黃豆粕水解之研究。東海大學,台中。
朱鴻鈞、陳葦芋、陳政忻 (2009). 台灣鯛產業概況及趨勢。農業生技產業期刊-動物與水產生技No.19。
黃妙惠 (2010). 發酵大豆粉及米糠對海鱺苗的成長影響。國立澎湖科技大學,澎湖。
黃則棓 (2005). 乳酸菌粉劑試量產-菌種及培養基之探討。朝陽科技大學,台中。
黃文廣 (2011). 飼糧益生菌對點帶石斑(Epinephelus coioides)的成長、活存、消化酵素及免疫力之研究。國立高雄海洋科技大學,高雄。
洪宗羽 (2006). 益生菌特性研究及其對猪隻生長性能、腸道生理、脂質代謝與免疫反應之影響。國立嘉義大學,嘉義。
邱佳禾 (2010). 肉豬生長過程腸道菌相變化之探討。東吳大學,臺北。
江麗芬 (2012). 飼料蛋白質種類對吳郭魚成長及攝食後血液游離胺基酸變化的影響-Ⅱ。國立高雄海洋科技大學,高雄。
何碧月、陳紫媖 (2011)。大豆粉在水產飼料中的利用,水試專訊,第34期:48-50
蔡茹芸 (2013). 以發酵海龍鬚菜部分取代魚粉餵飼金目鱸之生長狀況探討。國立高雄海洋科技大學,高雄
林瑄賢 (2014). 以發酵玉米麩質部分取代魚粉餵飼金目鱸之生長狀況探討。國立高雄海洋科技大學,高雄
林志侯 (2010). 乳酸菌載體表現系統之研究現況與趨勢。農業生技產業期刊-食品生技No.23。
張宏揚 (2011). 飼糧類胡蘿蔔素及大蒜粉對金目鱸的成長、活存率、抗氧化及非特異免疫能力的影響。國立高雄海洋科技大學水產養
殖所碩士論文,高雄。
張家榮 (2007). 金目鱸 Lates calcarifer 細胞株的建立及其應用。國立宜蘭大學生物技術研究所碩士論文,宜蘭。
許婉君 (2012). 山萵苣之抗氧化與抑制酪胺酸酶效能評估。嘉南藥理科技大學化粧品科技研究所碩士論文,台南。
盧鳳薇 (2009). 綠原酸抑制黑色素生成之研究。國立清華大學,新竹。
葉瑞涵 (2008). 混合型益生菌醱酵飼料應用於豬隻之評估。國立嘉義大學動物科學系碩士論文,嘉義。
陳鴻鈞 (2013). 魚卵蛋白機能特性及其水解胜肽抗自由基活性探討。國立高雄海洋科技大學,高雄。
陳珊珊 (2012). 飼糧類胡蘿蔔素對紅色吳郭魚(Oreochromis sp.)呈色、抗氧化能力、非特異性免疫反應及抗病能力之影響。國立高雄海洋科技大學,高雄。

英文文獻

Ando, H., Kondoh, H., Ichihashi, M. and Hearing, V. J. (2007). Approaches to identify inhibitors of melanin biosynthesis via the quality control of tyrosinase. Journal of Investigative Dermatology. 127: 751-761.

A.O.A.C. ( Association of Official Analytical Chemists ), 1984. W. Horwitz, Editor. Official Methods of Analysis, 13th edition. Washington D.C. USA.

Biswas, G., Thirunavukkarasu, A. R., Sundaray, J. K., Kailasam, M. (2010). Optimization of feeding frequency of Asian seabass (Lates calcarifer) fry reared in net cages under brackishwater environment. Aquaculture. 305: 26-31.

Boonyaratpalin, M., Suraneiranat, P., Tunpibal, T. (1998). Replacement of fish meal with various types of soybean products in diets for the Asian seabass, Lates calcarifer. Aquaculture. 161: 67-78.

Drew, M. D., Borgeson, T. L., Thiessen, D. L. (2007). A review of processing of feed ingredients to enhance diet digestibility in finfish. Animal Feed Science and Technology. 138: 118–136.

El-Sayed, A. F. M. (1999). Alternative dietary protein sources for farmed
tilapia, Oreochromis spp.. Aquaculture. 179: 149-168.

Gatesoupe, F. J. (1999). The use of probiotics in aquaculture. Aquaculture. 180: 147-165.

Hong, K. J., Lee, C. H., Kim, S. W. (2004). Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. Journal of Medicinal Food. 7(4): 430-435.

Kailasam, M., Thirunavukkarasu, A. R., Selvaraj, S., and Stalin, P. (2007). Effect of delayed initial feeding on growth and survival of Asian sea bass Lates calcarifer (Bloch) larvae. Aquaculture. 271(1): 298-306.

Kesarcodi-Watson, A., Kaspar, H., Josie Lategan, M., Gibson, L. (2008). Probiotics in aquaculture: The need, principles and mechanisms of action and screening processes. Aquaculture. 274: 1-14.

Kim, H., Choi, J., Cho, J. K., Kim, S. Y., Lee, Y. S. (2004). Solid-phase synthesis of kojic acid-tripeptides and their tyrosinaseinhibitory activity, storage stability, and toxicity. Bioorganic & Medicinal Chemistry Letters. 14: 2843-2846.

Kim, S. W., van Heugten, E., Ji, F., Lee, C. H., Mateo, R. D. (2010). Fermented soybean meal as a vegetable protein source for nursery
pigs: I. Effects on growth performance of nursery pigs. J. Anim. Sci. 88: 214-224.

Kwon, I. H., Kim, M. H., Yun, C. H., Go, J. Y., Lee, C. H., Lee, H. J., Phipek, W., Ha, J. K. (2011). Effects of fermented soybean meal on immune response of weaned calves with experimentally induced lipopolysaccharide challenge. Asian-Aust. J. Anim. Sci. 24(7): 957-964.

Li, C.Y., Lu, J. J., Wu, C. P., Lien, T. F. (2014). Effects of probiotics and bremelain fermented soybean meal replacing fish meal on growth performance, nutrient retention and carcass traits of broilers. Livestock Science. 163: 94–101.

Lin, K.W. (2003). Effects of dietary protein quality on the growth of juvenile cabia (Rachycentron canadum). NSUIMB, 85 pp.

Liu, X., Feng, J., Xu, Z., Lu, Y., Liu, Y. (2007). The Effects of fermented soybean meal on growth performance and immune characteristics in weaned piglets. Turk. J. Vet. Anim. Sci. 31(5): 341-345.

Liener, I.E., (2000). “Non-Nutritive Factors and Bioactive Compounds in Soy. In: Soy in Animal Nutrition”. Ed. J.D. Drackley. Federation of Animal
Science Societies.

Lin, S. J., Tin, Y. Y., and Chang, C. F. (1994). The stimulatory effects of 3,5,3’-Triiodo-L-Thyronine on the content of soluble protein in tilapia. J. Fish. Soc. Taiwan. 21 (4): 361-368.

Maragkoudakis, P. A., Zoumpopoulou, G., Miaris, C., Kalantzopoulos, G., Pot, B., Tsakalidou, E. (2006). Probiotic potential of Lactobacillus strains isolated from dairy products. Int. Dairy J. 16: 189–199.

Nayak, S.K. (2010). Probiotics and immunity: A fish perspective. Fish &
Shellfish Immunology. 29: 2-14.

Newaj-Fyzul, A., Al-Harbi, A. H., Austin, B. (2014). Review: Developments in the use of probiotics for disease control in aquaculture. Aquaculture. 431: 1-11.

Noh, J. M., Kwak, S. Y., Seo, H. S., Seo, J. H., Kim, B. G., Lee, Y. S. (2009). Kojic acid-amino acid conjugates as tyrosinase inhibitors. Bioorganic & Medicinal Chemistry Letters. 19: 5586–5589.

Parker, R. B. (1974). Probiotics, the other half of the antibiotics story. Anim. Nutr. Health. 29: 4-8.

Patterson, J. A., Burkholder, K.M. (2003). Application of prebiotics and probiotics in poultry production. Poultry Science. 82: 627-631.

Reid, G., Burton, J. (2002). Use of Lactobacillus to prevent infection by pathogenic bacteria. Microbes and Infection. 4: 319–324.

Sablon, E., Contreras, B., Vandamme, E. (2000). Antimicrobial Peptides of Lactic Acid Bacteria: Mode of Action, Genetics and Biosynthesis. Adv. Biochem. Eng. Biotechnol. 68: 21-60.

Saitoh, S., Koshio, S., Harada, H., Watanabe, K., Yoshida, T., Teshima, S. I. and Ishikawa, M. (2000). The effects of extruded soybean meal on growth and Digestibility of kuruma shrimp, penaeus japonicus juveniles. Suisanzoshoku. 48 (4): 649-655.

Schurink, M., van Berkel, W. J. H., Wichers, H. J., Boeriu, C. G. (2007). Novel peptides with tyrosinase inhibitory activity. Peptides. 28(3): 485-495.

Singh, M., Kaur, M., Silakari, O. (2014). Flavones: An important scaffold for medicinal chemistry. European Journal of Medicinal Chemistry. 84: 206-239.

Singh, K., Kallali, B., Kumar, A., Thaker, V. (2011). Probiotics: A review. Asian Pacific Journal of Tropical Biomedicine. 1(2): 287-290.

Slover, C. M., Danziger, L. (2008). Lactobacillus: a Review. Clinical Microbiology Newsletter. 30 (4): 23-27.

Tacon, A. G. J., Metian, M. (2008). Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture. 285: 146-158.

Tantikittia, C., Sangpong, W., Chiavareesajja, S. (2005). Effects of defatted soybean protein levels on growth performance and nitrogen and phosphorus excretion in Asian seabass (Lates calcarifer). Aquaculture. 248: 41-50.

van Eys, J. E., Offner, A., Bach, A. (2005). Manual of quality analyses for soybean products in the feed industry. American Soybean Association.

Wang, Y. B., Li, J. R., Lin, J. (2008). Probiotics in aquaculture: Challenges and outlook. Aquaculture. 281: 1-4.

Wang, Y., Kong, L. J., Li, C., Bureau, D. P. (2006). Effect of replacing fish meal with soybean meal on growth, feed utilization and carcass composition of cuneate drum (Nibea miichthioides). Aquaculture. 261: 1307-1313.

Yang, J. I., Ho, H. Y., Chu, Y. J., Chow, C. J. (2008). Characteristic and antioxidant activity of retorted gelatin hydrolysates from cobia (Rachycentron canadum) skin. Food Chemistry. 110 (1), 128-136.

Zhou, X., Tian, Z., Wang, Y., Li, W. (2010). Effect of treatment with probiotics as water additives on tilapia (Oreochromis niloticus) growth performance and immune response. Fish Physiol. Biochem. 36: 501-509.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊