|
1. Dai, S. A.; Juang, T.-Y.; Chen, C.-P.; Chang, H.-Y.; Kuo, W.-J.; Su, W.-C.; Jeng, R.-J., Synthesis of N-aryl azetidine-2,4-diones and polymalonamides prepared from selective ring-opening reactions. Journal of Applied Polymer Science 2007, 103 (6), 3591-3599. 2. H. Staudinger; O. Göhring; Schöller, M., Ketene, XXV. Über die Einwirkung von Säurechloriden auf Diphenylketen. European Journal of Inorganic Chemistry 1914, 47 (1), 40–48. 3. James Cuthbert Martin; Robert D. Burpitt; P. Glenn Gott; Melvin Harris; Meen, R. H., Ketenes. XIII. Reactions of ketenes with heterocumulenes. The Journal of Organic Chemistry 1971, 36 (16), 2205-2210. 4. Staudinger, H., Ketene, eine neue Körperklasse. Berichte der deutschen chemischen Gesellschaft 1905, 38 (2), 1735-1739. 5. Tidwell, T. T., Ketene chemistry after 100 Years: ready for a new century. European Journal of Organic Chemistry 2006, 2006 (3), 563-576. 6. Leibfarth, F. A.; Hawker, C. J., The emerging utility of ketenes in polymer chemistry. Journal of Polymer Science Part A: Polymer Chemistry 2013, 51 (18), 3769-3782. 7. Wolpert, D.; Schade, M.; Brixner, T., Femtosecond midinfrared study of the photoinduced Wolff rearrangement of diazonaphthoquinone. Journal of Chemical Physics 2008, 129 (9), 094504. 8. Leibfarth, F. A.; Kang, M.; Ham, M.; Kim, J.; Campos, L. M.; Gupta, N.; Moon, B.; Hawker, C. J., A facile route to ketene-functionalized polymers for general materials applications. Nature Chemistry 2010, 2 (3), 207-212. 9. González, L.; Ramis, X.; Salla, J. M.; Mantecón, A.; Serra, A., Reduction of the shrinkage of thermosets by the cationic curing of mixtures of diglycidyl ether of bisphenol A and 6,6-dimethyl-(4,8-dioxaspiro[2.5]octane-5,7-dione). Journal of Polymer Science Part A: Polymer Chemistry 2006, 44 (23), 6869-6879. 10. Wolffs, M.; Kade, M. J.; Hawker, C. J., An energy efficient and facile synthesis of high molecular weight polyesters using ketenes. Chemical Communications 2011, 47 (38), 10572-10574. 11. Leibfarth, F. A.; Wolffs, M.; Campos, L. M.; Delany, K.; Treat, N.; Kade, M. J.; Moon, B.; Hawker, C. J., Low-temperature ketene formation in materials chemistry through molecular engineering. Chemical Science 2012, 3 (3), 766-771. 12. Fillion, E.; Fishlock, D.; Wilsily, A.; Goll, J. M., Meldrum's acids as acylating agents in the catalytic intramolecular Friedel−Crafts reaction. The Journal of Organic Chemistry 2005, 70 (4), 1316-1327. 13. Wu, C.-Y.; Hu, C.-C.; Lin, L.-K.; Lai, J.-Y.; Liu, Y.-L., Liberation of small molecules in polyimide membrane formation: An effect on gas separation properties. Journal of Membrane Science 2016, 499, 20-27. 14. Cheawchan, S.; Uchida, S.; Sogawa, H.; Koyama, Y.; Takata, T., Thermotriggered catalyst-free modification of a glass surface with an orthogonal agent possessing nitrile N-oxide and masked ketene functions. Langmuir 2016, 32 (1), 309-15. 15. Jankovic, N.; Muskinja, J.; Ratkovic, Z.; Bugarcic, Z.; Rankovic, B.; Kosanic, M.; Stefanovic, S., Solvent-free synthesis of novel vanillidene derivatives of Meldrum's acid: biological evaluation, DNA and BSA binding study. RSC Advances 2016, 6 (45), 39452-39459. 16. Gopakumar, D. A.; Pasquini, D.; Henrique, M. A.; de Morais, L. C.; Grohens, Y.; Thomas, S., Meldrum’s acid modified cellulose nanofiber-based polyvinylidene fluoride microfiltration membrane for dye water rreatment and nanoparticle removal. ACS Sustainable Chemistry & Engineering 2017, 5 (2), 2026-2033. 17. Meldrum, A. N., A β-lactonic acid from acetone and malonic acid. Journal of the Chemical Society, Transactions 1908, 93, 598–601. 18. Davidson, D.; Bernhard, S. A., The structure of Meldrum's supposed β-lactonic acid. Journal of the American Chemical Society 1948, 70 (10), 3426 – 3428. 19. Pihlaja, K.; Seilo, M., The kinetics and mechanisms of the uncatalyzed and acid-catalyzed decomposition reactions of meldrum's acid and its methyl derivatives. Acta Chemica Scandinavica 1968, 22, 3053-3062. 20. McNab, H., Meldrum's acid. Chemical Society Reviews 1978, 7 (3), 345-358.
21. Arnett, E. M.; John A. Harrelson, J., A spectacular example of the importance of rotational barriers: The ionization of Meldrum's Acid. Journal of the American Chemical Society 1987, 109 (3), 809-812. 22. Nakamura, S.; Hirao, H.; Ohwada, T., Rationale for the acidity of meldrum's acid. Consistent relation of C−H acidities to the properties of localized reactive orbital. Journal of Organic Chemistry 2004, 69 (13), 4309-4316. 23. Pihlaja, K.; Seilo, M., The acidity and feneral base-catalyzed hydrolysis of Meldrum's acid and its methyl derivatives. Acta Chemica Scandinavica 1969, 23, 3003-3010. 24. Wu, J.; Iacono, S. T.; McCandless, G. T.; Smith, D. W.; Novak, B. M., Utilization of a Meldrum's acid towards functionalized fluoropolymers possessing dual reactivity for thermal crosslinking and post-polymerization modification. Chemical Communications 2015, 51 (44), 9220-9222. 25. Chen, B.-C.; Lue, P., A convenient preparation of 5,5-dialkyl meldrum's acids. Organic Preparations and Procedures International 1992, 24 (2), 185-188. 26. Wolffs, M.; Kade, M. J.; Hawker, C. J., An energy efficient and facile synthesis of high molecular weight polyesters using ketenes. Chemical Communications (Camb) 2011, 47 (38), 10572-4. 27. Lin, L. K.; Hu, C. C.; Su, W. C.; Liu, Y. L., Thermosetting resins with high fractions of free volume and inherently low dielectric constants. Chemical Communications (Camb) 2015, 51 (64), 12760-12763. 28. Leibfarth, F. A.; Schneider, Y.; Lynd, N. A.; Schultz, A.; Moon, B.; Kramer, E. J.; Bazan, G. C.; Hawker, C. J., Ketene functionalized polyethylene: control of cross-Link density and material properties. Journal of the American Chemical Society 2010, 132 (42), 14706–14709. 29. Jung, H.; Leibfarth, F. A.; Woo, S.; Lee, S.; Kang, M.; Moon, B.; Hawker, C. J.; Bang, J., Efficient surface neutralization and enhanced substrate adhesion through ketene mediated crosslinking and functionalization. Advanced Functional Materials 2013, 23 (12), 1597-1602. 30. Chou, Y.-K.; Chen, Y.; Lin, L.-K.; Liu, Y.-L., Thermosetting Resins Based on a Self-Crosslinkable Monomer/Polymer Possessing Meldrum's Acid Groups. Macromolecular Chemistry and Physics 2017, 218 (17), 1700147. 31. Fillion, E.; Fishlock, D., Scandium triflate-catalyzed intramolecular Friedel–Crafts acylation with Meldrum's acids: insight into the mechanism. Tetrahedron 2009, 65 (33), 6682-6695. 32. Chen, Y.; Lin, L. K.; Chiang, S. J.; Liu, Y. L., A Cocatalytic Effect between Meldrum's Acid and Benzoxazine Compounds in Preparation of High Performance Thermosetting Resins. Macromolecular Rapid Communications 2017, 38 (4). 33. A. C. Poshkus; Herweh, J. E., A New Reaction between Cyclohexanecarbonyl Chloride and Phenyl Isocyanate. The Journal of Organic Chemistry 1965, 30 (7), 2466–2469.
|