|
1Qian, Y. et al. Stretchable Organic Semiconductor Devices. Adv Mater 28, 9243-9265, doi:10.1002/adma.201601278 (2016). 2Jae-Won Chang, H. K., Jai-Kyeong Kim and Byeong Kwon Ju. Structure and Morphology of Vacuum-Evaporated Pentacene as a Function of the Substrate Temperature. Korean Physical Society 42, 647-651 (2003). 3B. Chandar Shekar, J. L. a. S.-W. R. Organic Thin Film Transistors: Materials, Processes and Devices. Korean J. Chem. Eng., 21, 267-285 (2004). 4Hsu, H.-H., Chang, C.-Y. & Cheng, C.-H. Room-temperature flexible thin film transistor with high mobility. Current AppliedPhysics13,1459-1462, doi:10.1016/j.cap.2013.04.026 (2013). 5Dedong Han, Z. C., Yingying Cong, Wen Yu, Xing Zhang, and Yi Wang. High-Performance Flexible Tin-Zinc-Oxide Thin-Film Transistors Fabricated on Plastic Substrates. IEEE TRANSACTIONS ON ELECTRON DEVICES 63, 3360-3363 (2016). 6Scenev, V. et al. Origin of mechanical strain sensitivity of pentacene thin-film transistors. Organic Electronics 14, 1323-1329, doi:10.1016/j.orgel.2013.02.030 (2013). 7Sekine, T., Fukuda, K., Kumaki, D. & Tokito, S. Highly stable flexible printed organic thin-film transistor devices under high strain conditions using semiconducting polymers. Japanese Journal of Applied Physics 54, 04DK10, doi:10.7567/jjap.54.04dk10 (2015). 8Han, G. et al. Interface engineering with double-network dielectric structure for flexible organic thin film transistors. OrganicElectronics52,213221,doi:10.1016/j.orgel.2017.10.031 (2018). 9Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. NATURE 428, 911-918 (2004). 10Kumar, B., Kaushik, B. K. & Negi, Y. S. Organic Thin Film Transistors: Structures, Models, Materials, Fabrication, and Applications: A Review. Polymer Reviews 54, 33-111, doi:10.1080/15583724.2013.848455 (2014). 11Golmar, F. et al. Non-conventional metallic electrodes for organic field-effect transistors. Organic Electronics 13, 2301-2306, doi:10.1016/j.orgel.2012.07.031 (2012). 12Binghao Wang, W. H., Lifeng Chi, Mohammed Al-Hashimi, Tobin J. Marks,, & Facchetti, a. A. . AmericanChemicalSociety,doi:10.1021/acs.chemrev.8b00045 (2018). 13Yun-Ting Hsieh, J. Y. C., Seijiro Fukuta, Po-Chen Lin, & Tomoya Higashihara, C.-C. C., and Wen-Chang Chen. Realization of Intrinsically Stretchable Organic Solar Cells Enabled by Charge-Extraction Layer and Photoactive Material Engineering. ACS Applied Materials & Interfaces (2018). 14Kumar, B., Kaushik, B. K. & Negi, Y. S. Perspectives and challenges for organic thin film transistors: materials, devices, processes and applications. Journal of Materials Science: Materials in Electronics 25, 1-30, doi:10.1007/s10854-013-1550-2 (2013). 15Ahn, T., Kim, J. W., Choi, Y. & Yi, M. H. Hybridization of a low-temperature processable polyimide gate insulator for high performance pentacene thin-film transistors. Organic Electronics 9, 711-720, doi:10.1016/j.orgel.2008.05.003 (2008). 16Lee, W.-H., Wang, C. C. & Ho, J. C. Influence of nano-composite gate dielectrics on OTFT characteristics. Thin Solid Films 517, 5305-5310, doi:10.1016/j.tsf.2009.03.156 (2009). 17Damaceanu, M.-D., Constantin, C.-P., Bruma, M. & Belomoina, N. M. Highly fluorinated polyimide blends – Insights into physico-chemical characterization. Polymer 55, 4488-4497, doi:10.1016/j.polymer.2014.06.089 (2014). 18Tsai, M.-H. et al. Thermal and mechanical properties of polyimide/nano-silica hybrid films. Thin Solid Films 519, 5238-5242, doi:10.1016/j.tsf.2011.01.167 (2011). 19Zhang, C., Wang, H., Shi, Z., Cui, Z. & Yan, D. UV-directly patternable organic–inorganic hybrid composite dielectrics for organic thin-film transistors. Organic Electronics 13, 3302-3309, doi:10.1016/j.orgel.2012.09.031 (2012). 20Kim, Y.-J., Kim, J., Kim, Y. S. & Lee, J.-K. TiO2-poly(4-vinylphenol) nanocomposite dielectrics for organic thin film transistors. Organic Electronics 14, 3406-3414, doi:10.1016/j.orgel.2013.09.007 (2013). 21Wang, C. et al. Thiol–ene Cross-Linked Polymer Gate Dielectrics for Low-Voltage Organic Thin-Film Transistors. ChemistryofMaterials25,4806-4812, doi:10.1021/cm403203k (2013). 22Jingbo Zhao, Y. L., Guofang Yang, Kui Jiang, Haoran Lin, Harald Ade,Wei Ma and He Yan. Efficient organic solar cells processed from hydrocarbon solvents. NATURE ENERGY 1, 1-7doi:10.1038/nenergy.2015.2710.1038/NENERGY.2015.27 (2016). 23Huang, T.-S., Su, Y.-K. & Wang, P.-C. Study of organic thin film transistor with polymethylmethacrylate as a dielectric layer. Applied Physics Letters 91, 092116, doi:10.1063/1.2775333 (2007). 24Yang-Yen Yu, C.-L. L., Yung-Chih Chen,a Yu-Cheng Chiue and Wen-Chang Chene. Tunable dielectric constant of polyimide–barium titanate nanocomposite materials as the gate dielectrics for organic thin film transistor applications. The Royal Society of Chemistry 4, 62132–62139, doi:10.1039/C4RA08694E10.1039/c4ra08694e (2014). 25Chou, W.-Y. et al. Gate field induced ordered electric dipoles in a polymer dielectric for low-voltage operating organic thin-film transistors. RSC Advances 3, 20267, doi:10.1039/c3ra42765j (2013). 26Lim, J. W., Koo, J. B., Yun, S. J. & Kim, H.-T. Characteristics of Pentacene Thin Film Transistor with Al[sub 2]O[sub 3] Gate Dielectrics on Plastic Substrate. Electrochemical and Solid-State Letters 10, J136, doi:10.1149/1.2760321 (2007). 27Lei Song, Y. W., Qian Gao, Yu Guo, Qijing Wang, Jun Qian, Sai & Jiang, B. W., Xinran Wang, Yi Shi, Youdou Zheng, and Yun Li. Speed Up Ferroelectric Organic Transistor Memories by Using Two-dimensional Molecular Crystalline Semiconductors. ACS Appl. Mater. Interfaces, 1-24 (2017). 28Chu, C.-W., Li, S.-H., Chen, C.-W., Shrotriya, V. & Yang, Y. High-performance organic thin-film transistors with metal oxide/metal bilayer electrode. Applied Physics Letters 87, 193508, doi:10.1063/1.2126140 (2005). 29Safari, K., Rafiee, A. & Oskouei, H.-D. Organic Thin Film Transistor with Carbon Nanotube Electrodes. Bulletin of Electrical Engineering and Informatics 5, 88-91, doi:10.11591/eei.v5i1.547 (2016). 30Savagatrup, S. et al. Plasticization of PEDOT:PSS by Common Additives for Mechanically Robust Organic Solar Cells and Wearable Sensors. Advanced Functional Materials 25, 427-436, doi:10.1002/adfm.201401758 (2015). 31McCoul, D., Hu, W., Gao, M., Mehta, V. & Pei, Q. Recent Advances in Stretchable and Transparent Electronic Materials. Advanced Electronic Materials 2, 1500407, doi:10.1002/aelm.201500407 (2016). 32Park, S. Y., Park, M. & Lee, H. H. Cooperative polymer gate dielectrics in organic thin-film transistors. Applied Physics Letters 85, 2283-2285, doi:10.1063/1.1794857 (2004). 33Tsai, C.-L., Chen, C.-J., Wang, P.-H., Lin, J.-J. & Liou, G.-S. Novel solution-processable fluorene-based polyimide/TiO2 hybrids with tunable memory properties. Polymer Chemistry 4, 4570, doi:10.1039/c3py00781b (2013). 34Shih, C. C., Lee, W. Y. & Chen, W. C. Nanostructured materials for non-volatile organic transistor memory applications. Materials Horizons 3, 294-308, doi:10.1039/c6mh00049e (2016). 35Lu, C., Lee, W.-Y. & Chen, W.-C. Manipulation of electrical characteristics of non-volatile transistor-type memory devices through the acceptor strength of donor–acceptor conjugated copolymers. Journal of Materials Chemistry C 4, 5702-5708, doi:10.1039/c6tc01765g (2016). 36Shih, C. C. et al. High Performance Transparent Transistor Memory Devices Using Nano-Floating Gate of Polymer/ZnO Nanocomposites. Sci Rep 6, 20129, doi:10.1038/srep20129 (2016). 37Jung, S.-W. et al. Non-volatile organic ferroelectric memory transistors fabricated using rigid polyimide islands on an elastomer substrate. Journal of Materials Chemistry C 4, 4485-4490, doi:10.1039/c6tc00083e (2016). 38Lee, W. Y. et al. n-Type Doped Conjugated Polymer for Nonvolatile Memory. Adv Mater 29, doi:10.1002/adma.201605166 (2017). 39Lu, C., Lee, W. Y., Shih, C. C., Wen, M. Y. & Chen, W. C. Stretchable Polymer Dielectrics for Low-Voltage-Driven Field-Effect Transistors. ACS Appl Mater Interfaces 9, 25522-25532, doi:10.1021/acsami.7b06765 (2017). 40Jiang, B.-H., Peng, Y.-J. & Chen, C.-P. Simple structured polyetheramines, Jeffamines, as efficient cathode interfacial layers for organic photovoltaics providing power conversion efficiencies up to 9.1%. Journal of Materials Chemistry A 5, 10424-10429, doi:10.1039/c7ta02954c (2017). 41Huang, Z., Hu, X., Liu, C., Tan, L. & Chen, Y. Nucleation and Crystallization Control via Polyurethane to Enhance the Bendability of Perovskite Solar Cells with Excellent Device Performance. Advanced Functional Materials 27, 1703061, doi:10.1002/adfm.201703061 (2017). 42Wang, J.-T. et al. Stretchable Conjugated Rod–Coil Poly(3-hexylthiophene)-block-poly(butyl acrylate) Thin Films for Field Effect Transistor Applications. Macromolecules 50, 1442-1452, doi:10.1021/acs.macromol.6b02722 (2017). 43Wen, H.-F. et al. Soft Poly(butyl acrylate) Side Chains toward Intrinsically Stretchable Polymeric Semiconductors for Field-Effect Transistor Applications. Macromolecules 50, 4982-4992, doi:10.1021/acs.macromol.7b00860 (2017). 44Shih, C.-C., Lee, W.-Y., Lu, C., Wu, H.-C. & Chen, W.-C. Enhancing the Mechanical Durability of an Organic Field Effect Transistor through a Fluoroelastomer Substrate with a Crosslinking-Induced Self-Wrinkled Structure. Advanced Electronic Materials 3, 1600477, doi:10.1002/aelm.201600477 (2017). 45Sun, T. et al. Reversible Plastic Deformation of Polymer Blends as a Means to Achieve Stretchable Organic Transistors. Adv Electron Mater 3, doi:10.1002/aelm.201600388 (2017). 46Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. NATURE 539, 411-415, doi:10.1038/nature20102 (2016).
|