跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 05:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝其聲
研究生(外文):Hsieh, Chi-Sheng
論文名稱:利用偏振奈米共軛焦顯微鏡檢測光學元件在運作時內部微小折射率變化
論文名稱(外文):Monitoring tiny variations of refractive index inside operated optical elements by polarization-sensitive nanoscale confocal microscopy
指導教授:詹明哲詹明哲引用關係
指導教授(外文):Chan, Ming-Che
口試委員:蘇海清鄭協昌卓冠宇
口試委員(外文):Su, Hai-ChingJeng, Shie-ChangZhuo, Guan-Yu
口試日期:2019-08-30
學位類別:碩士
校院名稱:國立交通大學
系所名稱:照明與能源光電研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:中文
論文頁數:66
中文關鍵詞:共軛焦顯微鏡發光電化學元件液晶光程差折射率偏振
外文關鍵詞:Confocal microscopyLight-emitting electrochemical cellliquid crystalsOptical path differenceRefractive indexPolarization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:281
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
因應現代半導體產業追求微小化及需求快速的檢測,本研究利用新穎共軛焦顯微鏡達到非侵入式的光學量測。此顯微鏡具有次微米等級橫向解析度與奈米等級縱向解析度,其特色為能夠迅速量測樣品表面三維影像或折射率所導致微小奈米光程差的變化,對於產品的良率檢測以及了解運作狀況有很好的幫助效果。本研究通過發光電化學元件加電壓運作時內部離子濃度分布狀況,量測出其折射率之細微變化。另一方面利用電輔助液晶在各種電壓運作時,分析其不同偏振下光程差之特性。
This study uses an advanced confocal microscope to achieve non-invasive optical measurements, In order to pursuit the demand of miniaturization and rapid detection of modern semiconductor industry. This microscope is provided with properties such as horizontal submicron resolutions and longitudinal nanometer resolutions, which can measure the three-dimensional image of the surface of the sample, and the minor change of the nanoscale optical path difference caused by refractive index rapidly. It is helpful for yield detection of the product and the understanding of the operational status. This research while applying voltage operation of the luminescent electrochemical component, the tiny variations of refractive index of the sample can be measured by the change of the ion concentration distribution of the internal. On the other hand, this research also uses the electrically assisted liquid crystal to analyze the characteristics of optical path difference at different polarizations, when operating at various voltages.
中文摘要 I
Abstract II
誌謝 III
目錄 IV
圖表目錄 VI
第一章 緒論 1
1.1前言 1
1.2研究動機 2
1.3論文大綱 5
第二章 實驗原理 6
2.1傳統顯微術原理 6
2.2共軛焦顯微術原理 7
(1)共軛焦顯微術原理 7
(2)從廣域發展至共焦成像之比較 9
2.3 彩色共軛焦顯微術原理 11
2.4差動共軛焦顯微術原理 12
第三章 實驗架構與流程 15
3.1本顯微鏡特色 15
3.2系統架構 16
3.3硬體介紹 19
3.3軟體介紹 28
3.4實驗流程 32
第四章 實驗結果 33
4.1樣品介紹 33
(1)發光電化學元件(LEC) 33
(2)電輔助液晶(EALC) 35
4.2樣品掃描結果分類 37
4.3發光電化學元件(LEC) 41
4.4電輔助液晶(EALC) 50
第五章 結論與未來展望 61
5.1結論 61
5.2未來展望 62
(一)系統架構光纖化 62
(二)使用光源的選擇 62
(三)掃描程式優化與後端資料處理整合 63
(四)各式樣品之檢測 63
參考文獻 64
[1] 范光照, “自動化光學檢測技術”, http://scimonth.blogspot.com/2018/02/blog-post_55.html.
[2] A. W. Adamson and A. P. Gast, “Physical chemistry of surfaces,” Wiley, (1997).
[3] For linear thermal expansion coefficients of typical materials, there is a summary
in the website:
12https://zh.wikipedia.org/wiki/%E7%83%AD%E8%86%A8%E8%83%80%E7%B3%BB%E6%95%B0
[4] S. Banerjee, R. M. Yang, C. E. Courchene and T. E. Conners, “Scanning electron
microscopy measurements of the surface roughness of paper,”Ind. Eng. Chem.
Res. 48, 4322-4325 (2009).
[5] G. Binnig, C. F. Quate, and Ch. Gerber, “Atomic force microscope,” Phys. Rev.
Lett. 12, 930 (1986).
[6] J. P. Ruppersberg, J. K. H. Horber, Ch. Gerber, and G. Binnig, “Imageing of cell
membraneous and cytoskeletal structures with a scanning tunneling microscope,”
FEBS Lett. 257, 460 (1989).
[7] Y. N. Denisyuk, “Photographic reconstruction of the optical properties of an
object in its own scattered radiation field,” Sov. Phys.-Dokl. 7, 543-545 (1962).
[8] “AOI自動光學檢測系統 機械視覺介紹/AOI介紹”, 1234http://apisc.com/aoi-introduction.htm.
[9] A. W. Adamson and A. P. Gast, “Physical chemistry of surfaces,” Wiley, (1997).
[10] C.-H. Lee, C.-L. Guo, and J. Wang, “Optical measurement of the viscoelastic and
biochemical responses of living cells to mechanical perturbation,” Opt. Lett. 23,
307-309 (1998).
[11] J. K. Stevens, L. R. Mills, and J. E. “Trogadis,Three-dimensional Confocal   
  Microscopy: Volume Investigation of Biological Systems,” Academic Press, Inc., San Diego, (1994).
[12] R. Juskaitis, N. P. Rea, and T. Wilson, “Semiconductor laser confocal microscopy,” Appl. Opt. 33, 578 (1994).
[13] A.Bearden, M. P. O’Neill, L. C. Osborne, and T. L. Wong, “Imaging and
vibrational analysis wuth laser-feedback interferometry,” Opt. Lett. 18, 238 (1993).
[14] F. Blateyron, “Chromatic confocal microscopy,” Optical measurement of Surface
Topography, 71-106 (2011).
[15] D. K. Hamiltion and T. Wilson, “Three-dimensional surface measurement using
the confocal scanning microscope,” Appl. Phys. B 27, 211 (1982).
[16] C. H. Lee, J. P. Wang, “Noninterferometric differential confocal microscopy
with 2-nm depth resolution,” OPT COMMUN, 135, 233-237 (1991).
[17] A. S. Sedra and K. C. Smith, Microelectronic Circuits, 3rd ed (Saunders College
Publishing, Philadephia), Chap. 6, See , for example, (1991).
[18] T. Wilson, and A. R. Carlini, “Size of the detector in confocal imaging systems,”
Opt. Lett. 12, 227 (1987).
[19] J. T. Wallmark, “A New Semiconductor Photocell Using Lateral Photo effect,”
Proc. IRE 45, 474-483 (1957).
[20] S. B. Meier, D. Tordera, A. Pertegás, C. Roldán-Carmona, E. Ortí, and H. J.
  Bolink, “Light-emitting electrochemical cells: recent progress and future  
  prospects,” ScienceDirect, 17, 217-223, (2014).
[21]L. Vicari, Optical Applications of Liquid Crystals (CRC Press, 2016).
[22]A. Nicastro, Polarized light microscopy in the study of liquid crystals, Vol. 14, p.
16. (1982)
[23]J. R. Bellare, H. T. Davis, W. G. Miller, and L. E. Scriven, "Polarized optical
microscopy of anisotropic media: Imaging theory and simulation," Journal of
Colloid and Interface Science 136, 305-326 (1990).
[24] I. Palarie, C. Dascalu, G. Iacobescu, and M. C. Varut, Surface morphology of
doped nematic liquid crystals: Role of dye concentration (2012), Vol. 39, pp. 1-5.
[25]A. R. Noble, H. J. Kwon, and R. G. Nuzzo, "Effects of Surface Morphology on
the Anchoring and Electrooptical Dynamics of Confined Nanoscale Liquid
Crystalline Films," Journal of the American Chemical Society 124, 15020-15029
(2002).
[26] A. Abderrahmen, F. F. Romdhane, H. B. Ouada, and A. Gharbi, "Investigation of
the liquid crystal alignment layer: effect on electrical properties," Science and
technology of advanced materials 9, 025001-025001 (2008).
[27] T. Tadokoro, T. Saiki, and H. Toriumi, "Two-Dimensional Analysis of Liquid
Crystal Orientation at In-Plane Switching Substrate Surface Using a Near-Field
Scanning Optical Microscope," Japanese Journal of Applied Physics 42,
L57-L59 (2003).
[28]H. Ren, S.-T. Wu, and Y.-H. Lin, "In Situ Observation of Fringing-Field-Induced
Phase Separation in a Liquid-Crystal--Monomer Mixture," Physical Review
Letters 100, 117801 (2008).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊