|
[1] Abraham, C., Cornillon, P. A., Matzner-Lober, E. and Molinari, N. (2003) Unsupervised curve clustering using B-spline. Scandinavian Journal of Statistics, 30:581-595. [2] Ash, R. B. and Gardner, M. F. (1975) Topics in Stochastic Processes. New York: Academic Press. [3] Bruno, F. and Cocchi, D. (2002) A unified strategy for building simple air quality indices. Environmetrics, 3:243-261. [4] Cali′ nski, T. and Harabasz, J. (1974) A dendrite method for cluster analysis. Communications in Statistics, 3:1-27. [5] Chiou, J.-M. and Li, P.-L. (2007) Functional clustering and identifying substructures of longitudinal data. Journal of the Royal Statistical Society Series, 69:679-699. [6] Chiou, J.-M., Chen, Y.-T. and Yang, Y.-F. (2014) Multivariate functional principal component analysis: a normalization approach. Statistica Sinica, 24:1571-1596. [7] Diakoulaki, D., Mavrotas, G. and Papayannakis, L. (1995) Determining objective weights in multiple criteria problems: the critic method. Computers and Operations Research, 22:763-770. [8] Fan, J. and Gijbels, I. (1996) Local Polynomial Modelling and Its Application. London: Chapman and Hall. [9] Ferraty, F. and Vieu, P. (2006) Nonparametric Functional Data Analysis: Theory and Practice. New York: Springer series in statistics. [10] Hall, P. and Hosseini-Nasab, M. (2012) On properties of functional principal components analysis. Journal of the Royal Statistical Society: Series B, 68:109-126. [11] Ignaccolo, R., Ghigo, S. and Bande, S. (2012) Functional zoning for air quality. Environmental and Ecological Statistics, 20:109-127. [12] Jacques, J. and Preda, C. (2012) Model-based clustering of functional data. In: 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges,459-464. [13] Jacques, J. and Preda, C. (2014) Model-based clustering for multivariate functional data. Computational Statistics and Data Analysis, 71:92-106. [14] James, G. M. and Sugar, C. A. (2003) Clustering for sparsely sampled functional data. Journal of the American Statistical Association, 98:397-408. [15] Li, P.-L. and Chiou, J.-M. (2011) Identifying cluster number for subspace projected functional data clustering. Computational Statistics and Data Analysis, 55:2090-2103. [16] Li, Y.-H. and Hsing, T.-L. (2010) Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data. The Annals of Statistics, 38:3321-3351. [17] Tarpey, T. and Kinateder, K.K.J. (2003) Clustering functional data. Journal of Classification, 20:93-114. [18] Ramsay, J. O. and Silverman, B. W. (2005) Functional Data Analysis. New York: Springer series in statistics. [19] Yao, F., M‥ uller, H. G., Clifford, A. J., Dueker, S. R., Follett, J., Lin, Y., Buchholz, B. A. and Vogel, J. S. (2003) Shrinkage estimation for functional principal component scores, with application to the population kinetics of plasma folate. Biometrics, 59:676-685. [20] Yao, F., M‥ uller, H. G. and Wang, J. L. (2005) Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association, 100:577-590.
|