|
參考文獻 [1] W. Boufas, N. Dupont, M. Berredjem, K. Berrezag, I. Becheker, H. Berredjem, N.-E. Aouf, Synthesis and antibacterial activity of sulfonamides. SAR and DFT studies, Journal of Molecular Structure, 1074 (2014) 180-185. [2] O. Skold, Sulfonamide resistance: mechanisms and trends, Drug Resist Updat, 3 (2000) 155-160. [3] R. Wei, F. Ge, S. Huang, M. Chen, R. Wang, Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China, Chemosphere, 82 (2011) 1408-1414. [4] L. Zhao, Y.H. Dong, H. Wang, Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China, Science of Total Environ, 408 (2010) 1069-1075. [5] E. Adamek, W. Baran, A. Sobczak, Assessment of the biodegradability of selected sulfa drugs in two polluted rivers in Poland: Effects of seasonal variations, accidental contamination, turbidity and salinity, Journal of Hazardous Materials, 313 (2016) 147-158. [6] A. Bialk-Bielinska, S. Stolte, J. Arning, U. Uebers, A. Boschen, P. Stepnowski, M. Matzke, Ecotoxicity evaluation of selected sulfonamides, Chemosphere, 85 (2011) 928-933. [7] T.A.M. Msagati, J.C. Ngila, Voltammetric detection of sulfonamides at a poly(3-methylthiophene) electrode, Talanta, 58 (2002) 605-610. [8] M. Iammarino, C. Palermo, D. Nardiello, M. Muscarella, Optimization and validation of a confirmatory method for determination of ten sulfonamides in feeds by LC and UV-diode array detection, Chromatographia, 73 (2011) 75-82. [9] J. Li, H. Liu, J. Zhang, Y. Liu, L. Wu, A novelty strategy for the fast analysis of sulfonamide antibiotics in fish tissue using magnetic separation with high‐performance liquid chromatography–tandem mass spectrometry, Biomedical Chromatography, 30 (2016) 1331-1337. [10] H. Sereshti, M. Khosraviani, M. Sadegh Amini-Fazl, Miniaturized salting-out liquid–liquid extraction in a coupled-syringe system combined with HPLC–UV for extraction and determination of sulfanilamide, Talanta, 121 (2014) 199-204. [11] G. Stubbings, T. Bigwood, The development and validation of a multiclass liquid chromatography tandem mass spectrometry (LC–MS/MS) procedure for the determination of veterinary drug residues in animal tissue using a QuEChERS (QUick, Easy, CHeap, Effective, Rugged and Safe) approach, Analytica Chimica Acta, 637 (2009) 68-78. [12] H. Yu, Y. Tao, D. Chen, Y. Wang, L. Huang, D. Peng, M. Dai, Z. Liu, X. Wang, Z. Yuan, Development of a high performance liquid chromatography method and a liquid chromatography–tandem mass spectrometry method with the pressurized liquid extraction for the quantification and confirmation of sulfonamides in the foods of animal origin, Journal of Chromatography B, 879 (2011) 2653-2662. [13] I. Cesarino, V. Cesarino, M.R.V. Lanza, Carbon nanotubes modified with antimony nanoparticles in a paraffin composite electrode: Simultaneous determination of sulfamethoxazole and trimethoprim, Sensors and Actuators B: Chemical, 188 (2013) 1293-1299. [14] T.G. Diaz, A.G. Cabanillas, M.I.A. Valenzuela, F. Salinas, Polarographic behaviour of sulfadiazine, sulfamerazine, sulfamethazine and their mixtures. Use of partial least squares in the resolution of the non-additive signals of these compounds, Analyst, 121 (1996) 547-552. [15] B.R.L. Ferraz, D. Profeti, L.P.R. Profeti, Sensitive detection of sulfanilamide by redox process electroanalysis of oxidation products formed in situ on glassy carbon electrode, Journal of Solid State Electrochemistry, 22 (2017) 339-346. [16] B. He, Electrochemical determination of sulfonamide based on glassy carbon electrode modified by Fe3O4/functionalized graphene, International Journal of Electrochemical Science, 12 (2017) 3001-3011. [17] B. He, W. Chen, Carboxyl multiwalled carbon nanotubes through ultrasonic dispersing in dimethylfomamide modified electrode as a sensitive amperometric sensor for detection of sulfonamide, International Journal of Electrochemical Science, 10 (2015) 4335 - 4345 [18] S. Sadeghi, A. Garmroodi, Sensitive detection of sulfasalazine at screen printed carbon electrode modified with functionalized multiwalled carbon nanotubes, Journal of Electroanalytical Chemistry, 727 (2014) 171-178. [19] S. Sadeghi, A. Motaharian, Voltammetric sensor based on carbon paste electrode modified with molecular imprinted polymer for determination of sulfadiazine in milk and human serum, Materials Science and Engineering: C, 33 (2013) 4884-4891. [20] C.D. Souza, O.C. Braga, I.C. Vieira, A. Spinelli, Electroanalytical determination of sulfadiazine and sulfamethoxazole in pharmaceuticals using a boron-doped diamond electrode, Sensors and Actuators B: Chemical, 135 (2008) 66-73. [21] K.K. Tadi, R.V. Motghare, V. Ganesh, Electrochemical detection of sulfanilamide using pencil graphite electrode based on molecular imprinting technology, Electroanalysis, 26 (2014) 2328-2336. [22] S.P. Ozkorucuklu, L. Ozcan, Y. Sahin, G. Alsancak, Electroanalytical determination of some sulfonamides on overoxidized polypyrrole electrodes, Australian Journal of Chemistry, 64 (2011) 965-972. [23] F. Colletti Ronald, J. Stewart Michael, E. Taylor Amelia, J. MacNeill Nancy, J. Mathias Lon, 2,5,‐Dimethoxy‐ and 2,5‐di‐n‐butoxy‐1,4‐benzoquinone reactions and polymerization with 1,6‐hexanediamine, Journal of Polymer Science Part A: Polymer Chemistry, 29 (2003) 1633-1638. [24] K. Kaleem, F. Chertok, S. Erhan, A novel coating based on poly(etheramine-quinone) polymers, Progress in Organic Coatings, 15 (1987) 63-71. [25] K. Kaleem, F. Chertok, S. Erhan, Quinone–amine polymers. II. 1,3‐bis(3‐aminophenoxy) benzene‐p‐benzoquinone oligomers, Journal of Polymer Science Part A: Polymer Chemistry, 27 (2003) 865-872. [26] V.S. Nithianandam, S. Erhan, Quinone—amine polymers: 10. Use of calcium hypochlorite in the syntheses of polyamine—quinone (PAQ) polymers, Polymer, 32 (1991) 1146-1149. [27] V.S. Nithianandam, K. Kaleem, F. Chertok, S. Erhan, Quinone–amine polymers. V. Syntheses and solubilities of several diamine–p‐benzoquinone oligomers (PAQ), Journal of Applied Polymer Science, 42 (2003) 2893-2897. [28] T.A. Reddy, S. Erhan, Preparation and characterization of reaction products between 2-phenylquinone and several aliphatic amines, International Journal of Polymeric Materials and Polymeric Biomaterials, 19 (1993) 109-116. [29] T.A. Reddy, S. Erhan, Quinone‐amine polymers. XII. Synthesis and characterization of novel polymers from 2‐phenylbenzoquinone and aliphatic diamines, Journal of Polymer Science Part A: Polymer Chemistry, 32 (2003) 557-565. [30] C. Jeyaprabha, S. Sathiyanarayanan, K.L.N. Phani, G. Venkatachari, Influence of poly(aminoquinone) on corrosion inhibition of iron in acid media, Applied Surface Science, 252 (2005) 966-975. [31] H.-p. Li, J.-j. Wan, S. Wang, Q.-w. Chang, Preparation of poly(amino-quinone) by microwave-assisted solid-state polymerization, Journal of Central South University of Technology, 17 (2010) 467-471. [32] J.L. Liang, D.E. Nikles, Amine-quinone polyurethanes as binders for metal particle tape, IEEE Transactions on Magnetics, 29 (1993) 3649-3651. [33] H. Mijeong, A.B. Helms, H. Yongqi, D.E. Nikles, J.A. Nikles, R. Sharma, S.C. Street, G.W. Warren, Amine-quinone polymers and the protection of iron particles against corrosion, IEEE Transactions on Magnetics, 35 (1999) 2763-2765. [34] M. Mure, S.A. Mills, J.P. Klinman, Catalytic mechanism of the topa quinone containing copper amine oxidases, Biochemistry, 41 (2002) 9269-9278. [35] T.A. Reddy, D. Macaione, S. Erhan, Quinone‐amine polymers. XV. Syntheses and characterization of high‐temperature resistant poly(arylamino‐quinone)s, Journal of Polymer Science Part A: Polymer Chemistry, 32 (2003) 1977-1982. [36] V.S. Nithianandam, S. Erhan, Quinone-amine polymers: 18: A novel method for the synthesis of poly(alkyl aminoquinone)s, Polymer, 39 (1998) 4095-4098. [37] X. Tu, Q. Xie, Z. Huang, Q. Yang, S. Yao, Synthesis and characterization of novel quinone-amine polymer/carbon nanotubes composite for sensitive electrocatalytic detection of NADH, Electroanalysis, 19 (2007) 1815-1821. [38] K. Ghanbari, N. Hajheidari, ZnO-CuxO/polypyrrole nanocomposite modified electrode for simultaneous determination of ascorbic acid, dopamine, and uric acid, Anal Biochem, 473 (2015) 53-62. [39] J. Luo, S. Jiang, H. Zhang, J. Jiang, X. Liu, A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode, Anal Chim Acta, 709 (2012) 47-53. [40] H.-B. Noh, S.B. Revin, Y.-B. Shim, Voltammetric analysis of anti-arthritis drug, ascorbic acid, tyrosine, and uric acid using a graphene decorated-functionalized conductive polymer electrode, Electrochimica Acta, 139 (2014) 315-322. [41] J. Ping, J. Wu, Y. Wang, Y. Ying, Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode, Biosens Bioelectron, 34 (2012) 70-76. [42] F. Xi, D. Zhao, X. Wang, P. Chen, Non-enzymatic detection of hydrogen peroxide using a functionalized three-dimensional graphene electrode, Electrochemistry Communications, 26 (2013) 81-84. [43] J.C. Chen, A.S. Kumar, H.H. Chung, S.H. Chien, M.C. Kuo, J.M. Zen, An enzymeless electrochemical sensor for the selective determination of creatinine in human urine, Sensors and Actuators B: Chemical, 115 (2006) 473-480. [44] M.-H. Chiu, W.-C. Wei, J.-M. Zen, The role of oxygen functionalities at carbon electrode to the electrogenerated chemiluminescence of Ru(bpy)32+, Electrochemistry Communications, 13 (2011) 605-607. [45] H.-H. Yang, M.-H. Chiu, K.-M. Chang, Y. Shih, Substituent effects on the electrocatalytic oxidation of phenols at preanodized screen-printed carbon electrodes, Journal of Electroanalytical Chemistry, 682 (2012) 172-174. [46] Z. Dursun, B. Gelmez, Simultaneous determination of ascorbic acid, dopamine and uric acid at pt nanoparticles decorated multiwall carbon nanotubes modified GCE, Electroanalysis, 22 (2010) 1106-1114. [47] K. Kor, K. Zarei, Electrochemical determination of chloramphenicol on glassy carbon electrode modified with multi-walled carbon nanotube–cetyltrimethylammonium bromide–poly(diphenylamine), Journal of Electroanalytical Chemistry, 733 (2014) 39-46. [48] J. Wang, A.-N. Kawde, M. Musameh, Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization, The Analyst, 128 (2003) 912. [49] Y. Yao, K.K. Shiu, Electron-transfer properties of different carbon nanotube materials, and their use in glucose biosensors, Analytical and Bioanalytical Chemistry, 387 (2007) 303-309. [50] P. Zhang, F.H. Wu, G.C. Zhao, X.W. Wei, Selective response of dopamine in the presence of ascorbic acid at multi-walled carbon nanotube modified gold electrode, Bioelectrochemistry, 67 (2005) 109-114. [51] P. Angelikopoulos, H. Bock, The differences in surfactant adsorption on carbon nanotubes and their bundles, Langmuir, 26 (2010) 899-907. [52] P.R. Silva, V.O. Almeida, G.B. Machado, E.V. Benvenutti, T.M. Costa, M.R. Gallas, Surfactant-based dispersant for multiwall carbon nanotubes to prepare ceramic composites by a sol-gel method, Langmuir, 28 (2012) 1447-1452. [53] J. Yu, N. Grossiord, C.E. Koning, J. Loos, Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution, Carbon, 45 (2007) 618-623. [54] A.M. Bueno, A.M. Contento, A. Rios, Validation of a screening method for the rapid control of sulfonamide residues based on electrochemical detection using multiwalled carbon nanotubes-glassy carbon electrodes, Analytical Methods, 5 (2013) 6821-6829. [55] B. Selvaraj, C.-W. Liao, J.-L. Chang, J.-M. Zen, Electrochemical synthesis of electroactive poly(melamine) with mechanistic explanation and its applicability to functionalize carbon surface to prepare nanotube–nanoparticles hybrid, Electrochimica Acta, 88(2013) 1–5. [56] B. Marczewska, M. Przegaliński, Poly(catechol) electroactive film and its electrochemical properties, Synthetic Metals, 182 (2013) 33-39. [57] S. Niu, M. Zhao, L. Hu, S. Zhang, Carbon nanotube-enhanced DNA biosensor for DNA hybridization detection using rutin-Mn as electrochemical indicator, Sensors and Actuators B: Chemical, 135 (2008) 200-205. [58] M.B. McBride, L.G. Wesselink, Chemisorption of catechol on gibbsite, boehmite, and noncrystalline alumina surfaces, Environmental Science & Technology, 22 (1988) 703-708. [59] H.T. Varghese, C.Y. Panicker, D. Philip, Vibrational spectroscopic studies and ab initio calculations of sulfanilamide, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 65 (2006) 155-158.
|