跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 22:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡懷慷
研究生(外文):HUAI-KANG TSAI
論文名稱:於鄰苯二酚溶液中進行磺胺藥物的電化學反應與電分析應用
論文名稱(外文):Electrochemical Reaction and Analytical Application of Sulfa Drugs in the Presence of Catechol
指導教授:鄭淑華鄭淑華引用關係
指導教授(外文):SHU-HUA CHENG
口試委員:曾志明蔡惠燕
口試委員(外文):JYH-MYNG ZENHWEI-YAN TSAI
口試日期:2018-07-25
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:68
中文關鍵詞:電化學感測器磺胺多壁奈米碳管醌胺聚合物差式脈衝伏安法
外文關鍵詞:electrochemical sensorssulfanilamidemulti-walled carbon nanotubequinone-amine polymersdifferential pulse voltammetry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
目前偵測磺胺的方法主要有質譜、層析等,而在電化學分析上也有利用分子印或活化碳材進行檢測,但質譜與層析的成本高,在先前的電化學方法中也有著電流訊號不明顯、電極製作繁瑣的的問題。本研究先將羧酸官能化奈米碳管(carboxylic acid functionalized multi-walled carbon nanotube, 以MWCNT 表示) 修飾於網版印刷碳電極 (screen-printed carbon electrode, 以SPCE 表示) 上,接著將SPCE/MWCNT進行氧化還原處理,即成功製備氧化還原碳管修飾電極(SPCE/MWCNTRD),並針對磺胺 (sulfanilamide, SAA)進行微量的定量分析。
利用循環伏安法(cyclic voltammetry, CV)偵測磺胺時,在 -0.2V ~ +0.8V的電位中觀測不到任何電流訊號,而在酸性環境下額外添加鄰苯二酚 (catechol, CA) 於分析溶液中後,CA會被電極表面氧化,促使醌胺聚合物(quinone-amine polymers , QAPs)生成,且能在+0.13V形成新的氧化還原對,且能利用QAPs的氧化電流來間接定量磺胺類藥物。利用差式脈衝伏安法(differential pulse voltammetry, DPV)進行磺胺的定量分析,線性範圍分別介於0.5-10 M 和10-50M,且此分析方法的最低極限檢測值為19.2 nM ,本研究利用簡單的修飾
方法,有效的降低偵測成本,並能大幅提前偵測電位。

The sulfonamide detection method mainly includes mass spectrometry and chromatography. In electrochemical detection, molecular imprinting technology and activated carbon materials are also used. However, mass spectrometry and chromatography are expensive, and the previous electrochemical methods also have a drawback that the current signal is not obvious and the electrode modification is complicated. In this study, carboxylic acid-functionalized multi-walled carbon nanotubes were first modified on a screen-printed carbon electrode, followed by electrochemical treatment, and then an activated carbon nanotubes modified electrode
(SPCE/MWCNTRD) was successfully prepared.
When using cyclic voltammetry to examine sulfanilamide in the presences of the potential range of -0.2V to +0.8V in an acidic environment, catechol will be oxidized on the surface of the electrode to promote the formation of quinone-amine polymers, and a new redox pair can be observed at +0.13V, which can be was use for quantification of the sulfonamide by differential pulse voltammetry (DPV). Two linear ranges of 0.5-10 μM and 10-50 μM were obtained. The lowest detection limit of this method was 19.2 nM. In this study, we use a simple modification method
to effectively determine sulfanilamide.

目次
摘要 i
Abstract ii
目次 iv
表目次 vii
圖目次 viii
第一章 簡介 1
1.1 磺胺類藥物介紹 1
1.2 Quinone-amine polymers (QAPs) 11
1.3 過氧化電極 14
1.4 奈米碳管 17
1.5 研究目的 19
第二章 實驗方法 20
2.1 藥品 20
2.2 實驗溶液配置 22
2.2.1 Buffer 製備 22
2.2.2 分析物溶液 22
2.3 SPCE/MWCNTRD 電極製備 23
2.4 偵測SAA方法 25
2.5 產物收集方法 26
2.6 儀器和設備 27
第三章 結果與討論 29
3.1 SPCE/MWCNTRD 的表面鑑定 29
3.1.1 SEM (Scanning electron microscopy) 29
3.1.2 AFM 31
3.1.3 拉曼光譜(Raman spectroscopy) 32
3.1.4 水接觸角儀(contact angle meter) 33
3.1.5 XPS (X-ray photoelectron spectroscopy) 34
3.2 機制探討 36
3.2.1 pH 影響 36
3.2.2 反應機制 40
3.3 產物鑑定 44
3.3.1 UV-Vis 44
3.3.2 FTIR 45
3.4 比較不同磺胺衍生物 47
3.5 SPCE/MWCNTRD 修飾條件最佳化 49
3.5.1 改變redox電位 49
3.5.2 改變浸泡時間 52
3.6 DPV定量 54
3.7 干擾物 56
3.8 真實樣品中SAA之定量分析 57
3.9 電化學方法偵測SAA文獻比較 60
第四章 結論 61
第五章 未來展望 62
參考文獻 63


表目次

Table 1.1 Effect of the interferents on DPV response corresponding to the detection of 10 μM Sulfonamides using MIP/PGE. 6
Table 1.2 Characteristics of sulfonamides calibration plots LOD, limits of detection; LOQ, limits of quantification; RSD, relative standard deviation 8
Table 2.1 Chemicals 20
Table 3.1 Difference kinds of Sulfonamides with CA measure by SPCE/MWCNTRD in pH = 5 48
Table 3.2 parameter of DPV 54
Table. 3.3 Interference effects on the determination of Sulfanilamide 56
Table 3.4 Result of recovert for SAA in real samples 59
Table. 3.5 Comparison of the analytical performance for the electrochemical determination different kinds of sulfonamides. 60


圖目次
Fig. 1.1 General structures of sulfonamide derivatives (sulfa drugs); R is a heterocyclic ring.[7] 1
Fig. 1.2 The structure of sulfa drugs. 2
Fig. 1.3 Cyclic voltammograms of BR buffer solution at bare GCE (curve a), 7.0×10-5 mol/L sulfonamide at bare GCE (curve b), 7.0×10-5 mol/L sulfonamide at carboxyl/DMF/MWCNTs/GCE (curve c), 1.0×10-4 mol/L sulfonamide at carboxyl/DMF/MWCNTs/GCE (curve d) in pH 1.80 BR buffer solution with the scan rate of 100 mV/s.[17] 3
Fig. 1.4 (a) Cyclic voltammograms for different concentrations of sulfonamide on the carboxyl/DMF/MWCNTs/GCE in pH 1.80 of BR buffer solution with the scan rate of 100 mV/s. Curve a to g corresponds to the concentrations of sulfonamide:1.0×10-4mol/L; 7.0×10- 5 mol/L; 5.0×10-5 mol/L; 3.0×10-5 mol/L; 1.0×10-5 mol/L; 7.0×10-6 mol/L; 1.0×10-6 mol/L, respectively. (b) Calibration curve between oxidation peak currents and the concentrations of sulfonamide. [17] 4
Fig. 1.5 Schematic representation of the proposed sensor for electrochemical detection of SN using molecularly imprinted PPy films on PGEs. 5
Fig. 1.6 DPV measurements obtained for the oxidation of SN at the MIP modified PGE for the following concentrations (a) blank (b) 5×10-8 M (c) 4.0×10-7 M (d) 7.98×10-7 M (e) 1.10×10-6 M (f) 10.90×10-6M (g) 20.48×10-6 M (h) 29.87×10-6 M (i) 39.07×10-6 M (j) 48.00×10-6 M of SN respectively. Measurement conditions: B-R buffer of pH 2.0, scan rate=80 mV s-1, 6
Fig. 1.7 Effects of acetonitrile/water ratio and pH on the OPPy electrode response for 0.10 mM (a) SAD, (b) SDZ, (c) SMZ, (d) SMM, (e) SMX in Britton– Robinson buffer solutions. 7
Fig. 1.8 The ionization process of the sulfonamides. 8
Fig. 1.9 TEM micrographs for: (A) MWCNT and (B) MWCNT-SbNPs nanocomposite. 9
Fig. 1.10 Cyclic voltammograms of the paraffin/MWCNT-SbNPs composite electrodein 0.2 mol L-1B-R buffer solution at pH 7.0 in absence of SMX and TMP (dotted line)and in the presence of 1.0 × 10-3mol L-1of SMX and TMP (solid line). 10
Fig. 1.11 DPV voltammograms for paraffin/MWCNT-SbNPs composite electrode, withthe optimised parameters. The SMX and TMP concentrations in μmol L−1are: (a)0.1, (b) 0.2, (c) 0.3, (d) 0.4, (e) 0.5, (f) 0.6 and (g) 0.7. Inset: linear dependence of the peaks current with SMX and TMP concentrations. 10
Fig. 1.12 Preparation of QAPs[36] 11
Fig. 1.13 Mechanism for the Formation of QAP polymer[37] 12
Fig. 1.14 Cyclic voltammograms in 0.10 mol L L-1 phosphate buffer (pH 7.0) containing 50 (dashed) and 0 (solid) mmol L-1 NADH at Au electrodes modified with QAP (a), MWCNTs (b), QAP-MWCNTs film (c) and the nanocomposite (d), respectively. Inset shows the response at a bare Au electrode in 0.10 mol L-1 phosphate buffer (pH 7.0) containing 1 mmol L-1 NADH. Scan rate: 50 mV s -1. 13
Fig. 1.15 Amperometric I – t curve for the detection of NADH on the Au electrodes modified with QAP (a), MWCNTs (b), and the nanocomposite (c) in the stirred 0.1 mol L-1 phosphate buffer. Operating potential: 0.25 V vs. SCE. Inset shows the calibration plot. 13
Fig. 1.16 High-resolution XPS responses for (A) C1s, O1s and (C) Conceptional representation for the surface characteristics[40]. 14
Fig. 1.17 XPS and ECL spectra of (A) SPCE*/NaOH, (B) SPCE and (C) SPCE*/H2SO4. The conditions of ECL detection system: flow rate, 1 mL/min; scan rate, 50 mV/s; scan range, 0.6–1.3 V vs. Ag/AgCl; electrolyte, 0.1 M PBS (pH 7); [Ru(bpy)3 +2]=100 μM. 15
Fig. 1.18 The effect of preanodization potential on the ratio of (A) C-OH/C-C and (B)C=O/C-C for SPCE_ and the relationship between the Epa of 10 ppm 4HP and theratio of (A) C-OH/C-C and (B) C=O/C-C for SPCE*. 16
Fig. 1.19 The structure of CNTs 17
Fig. 1.20 Hydrodynamic amperometric results for 3 mg/mL of each SAA. The average peak current obtained from injections (n = 4) of SDZ, SMZ, SAA, SGN, STZ and SXZ in 0.05 M KH2PO4 pH = 3: ACN : MeOH (80 : 15 : 5) solution at (A) MWCNTs-GCE and (B) GCE[54]. 18
Fig. 2.1 Schematic illustration for the preparation of modified electrodes. 24
Fig. 2.2 Schematic illustration of the assay for the determination of SAA. 25
Fig. 2.3 Schematic illustration of extract SAA sample 26
Fig. 3.1 Scanning electron micrographs of (A) bare SPCE, (B) SPCE/MWCNT, (C) SPCE/MWCNT after 2V 300s, and (D) SPCE/MWCNTRD Magnification of 50 K. 30
Fig. 3.2 AFM images of (A) SPCE/MWCNT and (B )SPCE/MWCNTRD 31
Fig. 3.3 Raman image of (a)SPCE/MWCNT and (b)SPCE/MWCNTRD 32
Fig. 3.4 Water contant angle of (A) bare SPCE (B) SPCE/MWCNT (C) SPCE/MWCNTRD 33
Fig. 3.5 ESCA spectra of (a) SPCE/MWCNT and (b) SPCE/MWCNTRD 34
Fig. 3.6 C1s XPS spectra of (A) SPCE/MWCNT and (B) SPCE/MWCNTRD 35
Fig. 3.7 CV curve of (a)bare SPCE ,(b)SPCE/MWNCT, (c)SPCE/MWCNTRD in pH 5 buffer solution containing (A) 1.0 mM CA (B)1.0 mM CA and 0.05mM SAA. Immsersion time: 7min Scan rate:0.10Vs-1 37
Fig. 3.8 CV curve of (a)bare SPCE ,(b)SPCE/MWCNT, (c)SPCE/MWCNTRD in pH 7 buffer solution containing (A) 1.0 mM CA (B)1.0 mM CA and 0.05mM SAA. Immsersion time: 7min Scan rate:0.10Vs-1 38
Fig. 3.9 CV curve of (a)bare SPCE, (b)SPCE/MWCNT, (c)SPCE/MWCNTRD in pH 9 buffer solution containing (A) 1.0 mM CA (B)1.0 mM CA and 0.05mM SAA. Immsersion time: 7min Scan rate:0.10Vs-1 39
Fig. 3.10 CV curve of (a) SPCE/MWCNT and (b) SPCE/MWCNTRD in blank solution (pH = 5) 40
Fig. 3.11 CV curve of (a)SPCE/MWCNT and (b)SPCE/MWCNTRD detect CA after immerse 7min in (A) original solution (B) in blank solution 41
Fig. 3.12 CV curve of (a)SPCE/MWCNT and (b)SPCE/MWCNTRD detect (A) SAA and (B) CA+SAA mixture after immerse 7min (pH = 7) 42
Fig. 3.13 Mechanism for the formation of QAP 43
Fig. 3.14 UV-vis spectrum of CA(10ppm) , SAA(5ppm) CA+SAA sample in ACN:H2O(6:4) 44
Fig. 3.15 FTIR spectra of (A)CA,SAA, CA+SAA and (B) CA+SAA 46
Fig. 3.16 CV cruve of difference kinds of Sulfonamides with CA by SPCE/MWCNTRD in pH = 5 47
Fig. 3.17 CV curve (A) and bar chart (B) of SPCE/MWCNT when redox with different final potential detect Catechol(1mM), SAA(50mM) in pH = 5 50
Fig. 3.18 CV curve (A) and bar chart (B) of SPCE/MWCNT when redox with different initial potential detect Catechol(1mM), SAA(50mM) in pH = 5 51
Fig. 3.19 CV cruve (A) and bar chart (B) of SPCE/MWCNTRD after immersion in the 50 mM sulfanilamide and 1mM catechol pH 5.0 solution. Scan rate = 0.10 V/s. Immersion time 3~15 min. 53
Fig. 3.20 DPV curve of SPCE/MWCNTRD immers in 1mM CA and (0.5, 0.1, 0.5, 1, 5, 10, 20, 30, 40, 50μM) of SAA in pH = 5 with immersion time = 7min 55
Fig. 3.21 Calibration plot of concentration 0.5μM~50μM (Insert:0.5μM~10μM of SAA). 55
Fig. 3.22 (A)DPV responses for SAA containing milk sample spiked with various concentration of 0, 1, 2, 5 and 10 μM of SAA (from a to e) in 0.1M pH 5.0 CA at SPCE/MWCNTRD . Immersion time = 7 min. (B) Calibration plot of concetration 0~10μM. 58
Fig. 3.23 (A)DPV responses for SAA containing lake water spiked with various concentration of 0, 1, 2, 5 and 10 μM of SAA (from a to e) in 0.1M pH 5.0 CA at SPCE/MWCNTRD . Immersion time = 7 min. (B) Calibration plot of concetration 0~10μM. 58

參考文獻
[1] W. Boufas, N. Dupont, M. Berredjem, K. Berrezag, I. Becheker, H. Berredjem, N.-E. Aouf, Synthesis and antibacterial activity of sulfonamides. SAR and DFT studies, Journal of Molecular Structure, 1074 (2014) 180-185.
[2] O. Skold, Sulfonamide resistance: mechanisms and trends, Drug Resist Updat, 3 (2000) 155-160.
[3] R. Wei, F. Ge, S. Huang, M. Chen, R. Wang, Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China, Chemosphere, 82 (2011) 1408-1414.
[4] L. Zhao, Y.H. Dong, H. Wang, Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China, Science of Total Environ, 408 (2010) 1069-1075.
[5] E. Adamek, W. Baran, A. Sobczak, Assessment of the biodegradability of selected sulfa drugs in two polluted rivers in Poland: Effects of seasonal variations, accidental contamination, turbidity and salinity, Journal of Hazardous Materials, 313 (2016) 147-158.
[6] A. Bialk-Bielinska, S. Stolte, J. Arning, U. Uebers, A. Boschen, P. Stepnowski, M. Matzke, Ecotoxicity evaluation of selected sulfonamides, Chemosphere, 85 (2011) 928-933.
[7] T.A.M. Msagati, J.C. Ngila, Voltammetric detection of sulfonamides at a poly(3-methylthiophene) electrode, Talanta, 58 (2002) 605-610.
[8] M. Iammarino, C. Palermo, D. Nardiello, M. Muscarella, Optimization and validation of a confirmatory method for determination of ten sulfonamides in feeds by LC and UV-diode array detection, Chromatographia, 73 (2011) 75-82.
[9] J. Li, H. Liu, J. Zhang, Y. Liu, L. Wu, A novelty strategy for the fast analysis of sulfonamide antibiotics in fish tissue using magnetic separation with high‐performance liquid chromatography–tandem mass spectrometry, Biomedical Chromatography, 30 (2016) 1331-1337.
[10] H. Sereshti, M. Khosraviani, M. Sadegh Amini-Fazl, Miniaturized salting-out liquid–liquid extraction in a coupled-syringe system combined with HPLC–UV for extraction and determination of sulfanilamide, Talanta, 121 (2014) 199-204.
[11] G. Stubbings, T. Bigwood, The development and validation of a multiclass liquid chromatography tandem mass spectrometry (LC–MS/MS) procedure for the determination of veterinary drug residues in animal tissue using a QuEChERS (QUick, Easy, CHeap, Effective, Rugged and Safe) approach, Analytica Chimica Acta, 637 (2009) 68-78.
[12] H. Yu, Y. Tao, D. Chen, Y. Wang, L. Huang, D. Peng, M. Dai, Z. Liu, X. Wang, Z. Yuan, Development of a high performance liquid chromatography method and a liquid chromatography–tandem mass spectrometry method with the pressurized liquid extraction for the quantification and confirmation of sulfonamides in the foods of animal origin, Journal of Chromatography B, 879 (2011) 2653-2662.
[13] I. Cesarino, V. Cesarino, M.R.V. Lanza, Carbon nanotubes modified with antimony nanoparticles in a paraffin composite electrode: Simultaneous determination of sulfamethoxazole and trimethoprim, Sensors and Actuators B: Chemical, 188 (2013) 1293-1299.
[14] T.G. Diaz, A.G. Cabanillas, M.I.A. Valenzuela, F. Salinas, Polarographic behaviour of sulfadiazine, sulfamerazine, sulfamethazine and their mixtures. Use of partial least squares in the resolution of the non-additive signals of these compounds, Analyst, 121 (1996) 547-552.
[15] B.R.L. Ferraz, D. Profeti, L.P.R. Profeti, Sensitive detection of sulfanilamide by redox process electroanalysis of oxidation products formed in situ on glassy carbon electrode, Journal of Solid State Electrochemistry, 22 (2017) 339-346.
[16] B. He, Electrochemical determination of sulfonamide based on glassy carbon electrode modified by Fe3O4/functionalized graphene, International Journal of Electrochemical Science, 12 (2017) 3001-3011.
[17] B. He, W. Chen, Carboxyl multiwalled carbon nanotubes through ultrasonic dispersing in dimethylfomamide modified electrode as a sensitive amperometric sensor for detection of sulfonamide, International Journal of Electrochemical Science, 10 (2015) 4335 - 4345
[18] S. Sadeghi, A. Garmroodi, Sensitive detection of sulfasalazine at screen printed carbon electrode modified with functionalized multiwalled carbon nanotubes, Journal of Electroanalytical Chemistry, 727 (2014) 171-178.
[19] S. Sadeghi, A. Motaharian, Voltammetric sensor based on carbon paste electrode modified with molecular imprinted polymer for determination of sulfadiazine in milk and human serum, Materials Science and Engineering: C, 33 (2013) 4884-4891.
[20] C.D. Souza, O.C. Braga, I.C. Vieira, A. Spinelli, Electroanalytical determination of sulfadiazine and sulfamethoxazole in pharmaceuticals using a boron-doped diamond electrode, Sensors and Actuators B: Chemical, 135 (2008) 66-73.
[21] K.K. Tadi, R.V. Motghare, V. Ganesh, Electrochemical detection of sulfanilamide using pencil graphite electrode based on molecular imprinting technology, Electroanalysis, 26 (2014) 2328-2336.
[22] S.P. Ozkorucuklu, L. Ozcan, Y. Sahin, G. Alsancak, Electroanalytical determination of some sulfonamides on overoxidized polypyrrole electrodes, Australian Journal of Chemistry, 64 (2011) 965-972.
[23] F. Colletti Ronald, J. Stewart Michael, E. Taylor Amelia, J. MacNeill Nancy, J. Mathias Lon, 2,5,‐Dimethoxy‐ and 2,5‐di‐n‐butoxy‐1,4‐benzoquinone reactions and polymerization with 1,6‐hexanediamine, Journal of Polymer Science Part A: Polymer Chemistry, 29 (2003) 1633-1638.
[24] K. Kaleem, F. Chertok, S. Erhan, A novel coating based on poly(etheramine-quinone) polymers, Progress in Organic Coatings, 15 (1987) 63-71.
[25] K. Kaleem, F. Chertok, S. Erhan, Quinone–amine polymers. II. 1,3‐bis(3‐aminophenoxy) benzene‐p‐benzoquinone oligomers, Journal of Polymer Science Part A: Polymer Chemistry, 27 (2003) 865-872.
[26] V.S. Nithianandam, S. Erhan, Quinone—amine polymers: 10. Use of calcium hypochlorite in the syntheses of polyamine—quinone (PAQ) polymers, Polymer, 32 (1991) 1146-1149.
[27] V.S. Nithianandam, K. Kaleem, F. Chertok, S. Erhan, Quinone–amine polymers. V. Syntheses and solubilities of several diamine–p‐benzoquinone oligomers (PAQ), Journal of Applied Polymer Science, 42 (2003) 2893-2897.
[28] T.A. Reddy, S. Erhan, Preparation and characterization of reaction products between 2-phenylquinone and several aliphatic amines, International Journal of Polymeric Materials and Polymeric Biomaterials, 19 (1993) 109-116.
[29] T.A. Reddy, S. Erhan, Quinone‐amine polymers. XII. Synthesis and characterization of novel polymers from 2‐phenylbenzoquinone and aliphatic diamines, Journal of Polymer Science Part A: Polymer Chemistry, 32 (2003) 557-565.
[30] C. Jeyaprabha, S. Sathiyanarayanan, K.L.N. Phani, G. Venkatachari, Influence of poly(aminoquinone) on corrosion inhibition of iron in acid media, Applied Surface Science, 252 (2005) 966-975.
[31] H.-p. Li, J.-j. Wan, S. Wang, Q.-w. Chang, Preparation of poly(amino-quinone) by microwave-assisted solid-state polymerization, Journal of Central South University of Technology, 17 (2010) 467-471.
[32] J.L. Liang, D.E. Nikles, Amine-quinone polyurethanes as binders for metal particle tape, IEEE Transactions on Magnetics, 29 (1993) 3649-3651.
[33] H. Mijeong, A.B. Helms, H. Yongqi, D.E. Nikles, J.A. Nikles, R. Sharma, S.C. Street, G.W. Warren, Amine-quinone polymers and the protection of iron particles against corrosion, IEEE Transactions on Magnetics, 35 (1999) 2763-2765.
[34] M. Mure, S.A. Mills, J.P. Klinman, Catalytic mechanism of the topa quinone containing copper amine oxidases, Biochemistry, 41 (2002) 9269-9278.
[35] T.A. Reddy, D. Macaione, S. Erhan, Quinone‐amine polymers. XV. Syntheses and characterization of high‐temperature resistant poly(arylamino‐quinone)s, Journal of Polymer Science Part A: Polymer Chemistry, 32 (2003) 1977-1982.
[36] V.S. Nithianandam, S. Erhan, Quinone-amine polymers: 18: A novel method for the synthesis of poly(alkyl aminoquinone)s, Polymer, 39 (1998) 4095-4098.
[37] X. Tu, Q. Xie, Z. Huang, Q. Yang, S. Yao, Synthesis and characterization of novel quinone-amine polymer/carbon nanotubes composite for sensitive electrocatalytic detection of NADH, Electroanalysis, 19 (2007) 1815-1821.
[38] K. Ghanbari, N. Hajheidari, ZnO-CuxO/polypyrrole nanocomposite modified electrode for simultaneous determination of ascorbic acid, dopamine, and uric acid, Anal Biochem, 473 (2015) 53-62.
[39] J. Luo, S. Jiang, H. Zhang, J. Jiang, X. Liu, A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode, Anal Chim Acta, 709 (2012) 47-53.
[40] H.-B. Noh, S.B. Revin, Y.-B. Shim, Voltammetric analysis of anti-arthritis drug, ascorbic acid, tyrosine, and uric acid using a graphene decorated-functionalized conductive polymer electrode, Electrochimica Acta, 139 (2014) 315-322.
[41] J. Ping, J. Wu, Y. Wang, Y. Ying, Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode, Biosens Bioelectron, 34 (2012) 70-76.
[42] F. Xi, D. Zhao, X. Wang, P. Chen, Non-enzymatic detection of hydrogen peroxide using a functionalized three-dimensional graphene electrode, Electrochemistry Communications, 26 (2013) 81-84.
[43] J.C. Chen, A.S. Kumar, H.H. Chung, S.H. Chien, M.C. Kuo, J.M. Zen, An enzymeless electrochemical sensor for the selective determination of creatinine in human urine, Sensors and Actuators B: Chemical, 115 (2006) 473-480.
[44] M.-H. Chiu, W.-C. Wei, J.-M. Zen, The role of oxygen functionalities at carbon electrode to the electrogenerated chemiluminescence of Ru(bpy)32+, Electrochemistry Communications, 13 (2011) 605-607.
[45] H.-H. Yang, M.-H. Chiu, K.-M. Chang, Y. Shih, Substituent effects on the electrocatalytic oxidation of phenols at preanodized screen-printed carbon electrodes, Journal of Electroanalytical Chemistry, 682 (2012) 172-174.
[46] Z. Dursun, B. Gelmez, Simultaneous determination of ascorbic acid, dopamine and uric acid at pt nanoparticles decorated multiwall carbon nanotubes modified GCE, Electroanalysis, 22 (2010) 1106-1114.
[47] K. Kor, K. Zarei, Electrochemical determination of chloramphenicol on glassy carbon electrode modified with multi-walled carbon nanotube–cetyltrimethylammonium bromide–poly(diphenylamine), Journal of Electroanalytical Chemistry, 733 (2014) 39-46.
[48] J. Wang, A.-N. Kawde, M. Musameh, Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization, The Analyst, 128 (2003) 912.
[49] Y. Yao, K.K. Shiu, Electron-transfer properties of different carbon nanotube materials, and their use in glucose biosensors, Analytical and Bioanalytical Chemistry, 387 (2007) 303-309.
[50] P. Zhang, F.H. Wu, G.C. Zhao, X.W. Wei, Selective response of dopamine in the presence of ascorbic acid at multi-walled carbon nanotube modified gold electrode, Bioelectrochemistry, 67 (2005) 109-114.
[51] P. Angelikopoulos, H. Bock, The differences in surfactant adsorption on carbon nanotubes and their bundles, Langmuir, 26 (2010) 899-907.
[52] P.R. Silva, V.O. Almeida, G.B. Machado, E.V. Benvenutti, T.M. Costa, M.R. Gallas, Surfactant-based dispersant for multiwall carbon nanotubes to prepare ceramic composites by a sol-gel method, Langmuir, 28 (2012) 1447-1452.
[53] J. Yu, N. Grossiord, C.E. Koning, J. Loos, Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution, Carbon, 45 (2007) 618-623.
[54] A.M. Bueno, A.M. Contento, A. Rios, Validation of a screening method for the rapid control of sulfonamide residues based on electrochemical detection using multiwalled carbon nanotubes-glassy carbon electrodes, Analytical Methods, 5 (2013) 6821-6829.
[55] B. Selvaraj, C.-W. Liao, J.-L. Chang, J.-M. Zen, Electrochemical synthesis of electroactive poly(melamine) with mechanistic explanation and its applicability to functionalize carbon surface to prepare nanotube–nanoparticles hybrid, Electrochimica Acta, 88(2013) 1–5.
[56] B. Marczewska, M. Przegaliński, Poly(catechol) electroactive film and its electrochemical properties, Synthetic Metals, 182 (2013) 33-39.
[57] S. Niu, M. Zhao, L. Hu, S. Zhang, Carbon nanotube-enhanced DNA biosensor for DNA hybridization detection using rutin-Mn as electrochemical indicator, Sensors and Actuators B: Chemical, 135 (2008) 200-205.
[58] M.B. McBride, L.G. Wesselink, Chemisorption of catechol on gibbsite, boehmite, and noncrystalline alumina surfaces, Environmental Science & Technology, 22 (1988) 703-708.
[59] H.T. Varghese, C.Y. Panicker, D. Philip, Vibrational spectroscopic studies and ab initio calculations of sulfanilamide, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 65 (2006) 155-158.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊