|
References Andrew, D. R., P. D. Shane, and P. B. Graeme. 2001. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytologist: 10 pages. Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiology, Volume 24 Azia, F., and K. A. Stewart. 2007. Relationships between extractable chlorophyll and SPAD values in muskmelon leaves. Plant Nutrition, Volume 24, 2001 - Issue 6: Pages: 961-966. Berk, K. N. (1978). Comparing subset regression procedures. Technometrics, (Vol. 20:1–6.). Blackmer, T. M., and J. S. Schepers. 1995. Use of a chlorophyll meter to monitor nitrogen status and schedule fertigation for corn. J Prod Agric, 8. http://dx.doi.org/10.2134/jpa1995.0056 Broge, N. H., and E. Leblanc. 2001. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76(2):156-172. Cabangon, R. J., E. G. Castillo, and T. P. Tuong. 2011. Chlorophyll meter-based nitrogen management of rice grown under alternate wetting and drying irrigation. Field Crops Res, 121. Carrijo, D. R., M. E. Lundy, and B. A. Linquist. 2017. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Research, 203: 173-180. Castro, F. A., E. Campostrini, A. T. Netto, and L. H. Viana. 2012. Relationship between photochemical efficiency (JIP-Test Parameters) and portable chlorophyll meter readings in papaya plants Brazilian Society of Plant Physiology, Braz. J. Plant Physiol., 23(4): 295-304 Chander, G., B. L. Markham, and D. L. Helder. 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(5): 893-903. Clevers, J. G. P. W., and A. A. Gitelson. 2013. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3. International Journal of Applied Earth Observation and Geoinformation, 23: 344-351. Curran, P. J., J. L. Dungan, and H. L. Gholz. 1990. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiology 7,33-48. Daughtry, C. S. T., C. L. Walthall, M. S. Kim, E. B. de Colstoun, and J. E. McMurtrey Iii. 2000. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sensing of Environment, 74(2): 229-239. Dean, J., J. Mixter, and J. Barr. (2015). Multi-Rotor Unmanned Aerial Vehicle. Western Michigan University ScholarWorks at WMU. Elarab, M., A. M. Ticlavilca, A. F. Torres-Rua, I. Maslova, and M. McKee. 2015. Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture. International Journal of Applied Earth Observation and Geoinformation, 43:32-42. Gates, D. M., H. J. Keegan, J. C. Schleter, and V. R. Weidner. 1965. Spectral Properties of Plants. Applied Optics, 4(1):11-20. Gitelson, A., and M. N. Merzlyak. 1994. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. Journal of Plant Physiology, 143(3): 286-292. http://www.sciencedirect.com/science/article/pii/S0176161711816330. Gitelson, A. A., Y. Gritz , and M. N. Merzlyak. 2003. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160(3): 271-282. Gitelson, A. A., and M. N. Merzlyak. 1998. Remote sensing of chlorophyll concentration in higher plant leaves. Advances in Space Research, 22(5): 689-692. Gitelson, A. A., M. N. Merzlyak, and Y. Grits. 1996. Novel algorithms for remote sensing of chlorophyll content in higher plant leaves. Geoscience and Remote Sensing Symposium, (4): 2355-2357. Guo, T., T. Kujirai, and T. Watanabe. 2012. Mapping crop status from an unmanned aerial vehicle for precision agriculture applications. Remote Sensing and Spatial Information Sciences, XXXIX-B1. Haboudane, D., J. R. Miller, E. Pattey, P. J. Zarco-Tejada, and I. B. Strachan. 2004. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3): 337-352. Haboudane, D., J. R. Miller, N. Tremblay, P. J. Zarco-Tejada, and L. Dextraze. 2002. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81(2–3): 416-426. Haboudane, D., N. Tremblay, J. R. Miller, and P. Vigneault. 2008. Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data. IEEE Transactions On Geoscience And Remote Sensing, Vol. 46, No. 2. Harman, S. 2017. Characteristics of the Radar signature of multi-rotor UAVs. Paper presented at the 2016 European Radar Conference (EuRAD). Kayacan, E., M. A. Khanesar, J. Rubio-Hervas, and M. Reyhanoglu. 2017. Learning Control of Fixed-Wing Unmanned Aerial Vehicles Using Fuzzy Neural Networks. International Journal of Aerospace Engineering, Volume 2017, Article ID 5402809: 12 pages. Kim, M. S., C. S. T. Daughtry, E. W. Chappelle, J. E. Mcmurtrey, and C. L. Walthall. 1994. The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation. Conference Paper: 299-306.. Krishnamurthy, P., and F. Khorrami. 2015. A Control Design for Quad Rotor UAVs with Input Unmodeled Dynamics. IFAC-PapersOnLine, 48(11): 227-232. http://www.sciencedirect.com/science/article/pii/S2405896315012690 Lampayan, R. M., R. M. Rejesus, G. R. Singleton, and B. A. M. Bouman. 2015. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Research, 170: 95-108.http://www.sciencedirect.com/science/article/pii/S0378429014003001 Larcher, W. 1995. Physiological Plant Ecology, . Springer, 3rd edn. Berlin, Germany. Lichtenthaler, H. K. 1987. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. . Methods in Enzymology, 148, 350-382. Liebisch, F., N. Kirchgessner, D. Schneider, A. Walter, and A. Hund. 2015. Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach. Plant Methods, 11(1): 9. http://dx.doi.org/10.1186/s13007-015-0048-8. Lillian, B. (2016). senseFly’s Latest Fixed-Wing Mapping Drone . Mekonnen, M. M., and A. Y. Hoekstra. 2016. Four billion people facing severe water scarcity. Science Advances, Vol. 2, no. 2, e1500323. Moran, J. A., A. K. Mitchell, G. Goodmanson, and K. A. Stockburger. 2000. Differentiation among effects of nitrogen fertilization treatments on conifer seedlings by foliar reflectance: a comparison of methods. Tree Physiology 20, 1113–1120. Nonami, K. 2010. Fundamental Modeling and Control of Small and Miniature Unmanned Helicopters. Springer, Autonomous Flying Robots: Unmanned Aerial Vehicles and Micro Aerial Vehicles. Norton, G. J., M. Shafaei, A. J. Travis, C. M. Deacon, J. Danku, D. Pond, N. Cochrane, K. Lockhart, D. Salt, H. Zhang, I. C. Dodd, M. Hossain, M. R. Islam, and A. H. Price. 2017. Impact of alternate wetting and drying on rice physiology, grain production, and grain quality. Field Crops Research, 205: 1-13. Parry, C., M. J. Blonquist, and B. Bugbee. 2014. In situ measurement of leaf chlorophyll concentration: analysis of the optical/absolute relationship. Plant, Cell and Environment (2014) 37, 2508–2520.
Pascual, V. J., and Y.-M. Wang. 2016. Utilizing rainfall and alternate wetting and drying irrigation for high water productivity in irrigated lowland paddy rice in southern Taiwan. Plant Production Science, 20(1): 24-35. Patane, P., and V. Anup. 2014. Chlorophyll and Nitrogen Estimation Techniques: A Review. International Journal of Engineering Research and Reviews, Vol. 2(Issue 4): pp: (33-41). Peñuelas, J., and I. Filella. 1998. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends in Plant Science 3: 151–156. Porra, R. J. 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynthesis Research 73:149–156. Primicerio, J., S. F. Di Gennaro, E. Fiorillo, L. Genesio, E. Lugato, A. Matese, and F. P. Vaccari. 2012. A flexible unmanned aerial vehicle for precision agriculture Precision Agric (2012) 13:517–523. Ramalho de Oliveira, L. F., M. L. Romarco de Oliveira, F. S. Gomes , and R. C. Santana. 2016. Estimating foliar nitrogen in Eucalyptus using vegetation indexes. Scientia Agricola. Rawlings, J. O., S. G. Pantula, and D. A. Dickey. 1998. Applied Regression Analysis: A Research Tool, Second Edition (Springer Ed.). Ritchie, R. J. 2006. Consistent Sets of Spectrophotometric Chlorophyll Equations for Acetone, Methanol and Ethanol Solvents. Photosynthesis Research, 89(1): 27-41.http://dx.doi.org/10.1007/s11120-006-9065-9. Rokhmana, C. A. 2015. The Potential of UAV-based Remote Sensing for Supporting Precision Agriculture in Indonesia. Procedia Environmental Sciences, 24: 245 253. Rouse, J. W., Jr., R. H. Haas, J. A. Schell, and D. W. Deering. 1979. Monitoring vegetation systems in the Great Plains with ERTS. NASA. Goddard Space Flight Center 3d ERTS-1 Symp., Vol. 1, Sect. A; p 309-317. Shibghatallah, M. A. H., S. N. Khotimah, S. Suhandono, S. Viridi, and T. Kesuma. 2013. Measuring Leaf Chlorophyll Concentration from Its Color A Way in Monitoring Environment Change to Plantations. arXiv:1305.1148v2 [physics.bio-ph]. Sid'ko, A. F., I. Y. Botvich, T. I. Pisman, and A. P. Shevyrnogov. 2017. Estimation of chlorophyll content and yield of wheat crops from reflectance spectra obtained by ground-based remote measurements. Field Crops Research, 207: 24-29. Sims, D. A., and J. A. Gamon. 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81(2–3): 337-354. Steele, M. R., A. A. Gitelson, and D. C. Rundquist. 2008. A Comparison of Two Techniques for Nondestructive Measurement of Chlorophyll Content in Grapevine Leaves. Agronomy Journal, Volume 100, Issue 3. Sumanta, N., C. I. Haque, J. Nishika, and R. Suprakash. 2014. Spectrophotometric Analysis of Chlorophylls and Carotenoids from Commonly Grown Fern Species by Using Various Extracting Solvents. Research Journal of Chemical Sciences, Vol. 4(9)( ): (63-69). Tahar, K. N., and A. Ahmad. 2013. An Evaluation on Fixed Wing and Multi-Rotor UAV Images using Photogrammetric Image Processing. International Journal of Computer, Electrical, Automation, Control and Information Engineering, Vol:7, No:1. Tong, A., and Y. He. 2017. Estimating and mapping chlorophyll content for a heterogeneous grassland: Comparing prediction power of a suite of vegetation indices across scales between years. ISPRS Journal of Photogrammetry and Remote Sensing, 126: 146-167. Tucker, C. J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2): 127-150. http://www.sciencedirect.com/science/article/pii/0034425779900130 Ustin, S. L., A. A. Gitelson, S. Jacquemoud, M. Schaepman, G. P. Asner, J. A. Gamon, and P. Zarco-Tejada. 2009. Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sensing of Environment, 113, Supplement 1: S67-S77. Vincini, M., E. Frazzi, and P. D’Alessio. 2008. A broad-band leaf chlorophyll index at the canopy scale. Precision Agric (2008) 9:303–319. Warren, G., and G. Metternicht. 2005. Agricultural applications of high-resolution digital multispectral imagery: Evaluating within-field spatial variability of canola (Brassica napus) in Western Australia. Photogrammetric Engineering and Remote Sensing, 71 595–602 Wood, C. W., D. W. Reeves, and D. G. Himelrick. 1993. Relationships between chlorophyll meter readings and leaf chlorophyll concentration, N status, and crop yield: A review. 9 pages. Wright, S. W., S. W. Jeffrey, and F. R. C. Mantoura. 1997. Evaluation of methods and solvents for pigment analysis. In: Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publ., Paris: 261–282 Yan, L., Z. Gou, and Y. Duan. 2009. A UAV Remote Sensing System: Design and Tests. Springer Science. Yang, C., J. H. Everitt, and J. M. Bradford. 2006. Comparison of QuickBird satellite imagery and airborne imagery for mapping grain sorghum yield patterns Precision Agric, (2006) 7:33–44. Zarco-Tejada, P. J. 2000. Hyperspectral Remote Sensing of Closed Forest Canopies Estimation of Chlorophyll Fluorescence and Pigment Content. Graduate Program in Earth and Space Science. York University Toronto, Ontario, Canada: 223 Pages. Zhang, C., and J. M. Kovacs. 2012. The application of small unmanned aerial systems for precision agriculture: a review. Precis Agric, 13. http://dx.doi.org/10.1007/s11119-012-9274-5.
|