跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/25 17:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林呈彥
研究生(外文):Chen-Yen Lin
論文名稱:利用床質添加劑增進生質物氣化產氫之研究
論文名稱(外文):Enhancement of hydrogen production by using bed-additives during biomass gasification process
指導教授:魏銘彥
口試委員:林明德莊桂鶴
口試日期:2013-07-26
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:67
中文關鍵詞:氣化產氫生質物觸媒床質添加劑
外文關鍵詞:gasificationhydrogen productionbiomasscatalystbed-additives
相關次數:
  • 被引用被引用:0
  • 點閱點閱:231
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於近年來石化燃料及其它的天然資源大量地被消耗,使得生質能源成為全球所研究之對象,其中氫氣因熱值高、反應後產物僅有水,故成為目前研究替代能源之重點。
本研究利用流體化床反應器探討床質添加劑在生質物氣化產氫過程所扮演之角色。於生質物氣化產氫實驗前,先以含浸法製備1 wt.%、5 wt.%、10 wt.%之Ni/Al2O3及1 wt.%、5 wt.%、10 wt.%之Fe/Al2O3。
於SEM結果可得知當鎳金屬披覆量從1 wt.%增至5 wt.%時,逐漸形成完整的氧化鎳晶相,且有較佳之金屬分散性。而鐵金屬披覆量1 wt.%時,觸媒表面生成具分散性佳之FeO晶相,因此有較佳之產氫能力。
於流體化床添加不同床質添加劑對產氫率之影響,結果顯示床質添加劑於流體化床進行生質物氣化產氫有助於提升其氫氣選擇率,其中Fe/Al2O3 + CaO之混合床質添加劑之氫氣提升率為56 %,而使用Ni/Al2O3 + CaO混合床質添加劑及Ni/Al2O3 + Fe/Al2O3 + CaO混合床質添加劑分別有30.6 %及29.5 %的氫氣提升率。綜合本研究結果,證明本研究所使用之床質添加劑於生質物氣化過程能有效降低二氧化碳排放、提升氫氣產率及促進碳轉換等功能。
Recently, with the crisis of fossil-fuels shortage and climate change, much work is currently under way to exploit renewable energy. Among various renewable energies, hydrogen energy attracts huge attention due to its major advantages in system efficiency and environmental friendliness.
In order to investigate the role of bed-additives for hydrogen production during biomass gasification, the effect on hydrogen production ability of different bed-additive mixtures were studied. Before biomass gasification in fluidized bed reactor, different metal loading amounts of alumina oxide (Al2O3) catalysts were synthesized by impregnation method. XRD results indicated that increasing the Ni loading ratio exhibited strong diffraction peaks corresponding to NiO due to the growth of crystallites. However, iron oxide species would significantly affect the hydrogen production ability. When the Fe content increased to 1 wt. %, the main reactive sites, FeO, spread over almost entire Al2O3 support. Therefore, 1 wt. % Fe/Al2O3 catalyst had good performance of hydrogen production.
The efficiencies of biomass gasification at 660℃ with different bed-additives were evaluated. The results indicated that all these bed-additives have contributed to enhance the hydrogen selectivity. The hydrogen promotion ratios of Fe/Al2O3 + CaO, Ni/Al2O3 + CaO and Ni/Al2O3 + Fe/Al2O3 + CaO bed-additive mixtures were promoted to 56%, 30.6%, and 29.5%, respectively. Consequently, the bed-additives played important roles in reducing CO2 emission, enhancement of hydrogen production, and promotion of carbon transformation.
總目錄
摘要
Abstract
總目錄
圖目錄
表目錄
第一章 前言 1
1-1 研究緣起與目的 1
1-2 研究架構與內容 3
第二章 文獻回顧 6
2-1 氫氣 6
2-2 氫經濟 9
2-3 生質能轉換技術 11
2-4 熱轉化技術 13
2-4-1 裂解機制 14
2-4-2 氣化機制 15
2-5 生質物氣化產氫之影響因子 18
2-5-1 流體化床 18
2-5-2 最小流體化速度 19
2-5-3 生質物進料大小及種類 20
2-5-4 空氣等值比 20
2-5-5 富氫氣化方法 21
2-6 觸媒特性 23
2-6-1 觸媒之催化性質 23
2-6-2 觸媒之組成 24
2-6-3 生質物氣化反應觸媒之組成 27
2-7 文獻總結及研究方向 29
第三章 實驗設備與方法 31
3-1 實驗藥品及氣體 31
3-2 實驗設備及分析儀器 32
3-3 觸媒製備流程 32
3-3-1 氧化鈣篩選 32
3-3-2 觸媒Ni/Al2O3製備 33
3-3-3 觸媒Fe/Al2O3製備 35
3-3-4 流體化床反應器 37
3-4 分析儀器之簡介 39
3-4-1 氣相層析儀-熱導偵測器(GC-TCD) 39
3-4-2 場發射掃描式電子顯微鏡(FESEM) 40
3-4-3 X光射線繞射儀(XRD) 41
3-4-4 比表面積分析儀(BET) 42
3-5 實驗流程及操作條件 43
3-5-1 流體化床之進料組成 43
3-5-2 流體化床之操作流程與操作條件 43
3-5-3 流體化床之固、液及氣體三相收集 44
3-6 實驗試程之規劃 45
第四章 結果與討論 46
4-1 床質添加劑之特性分析 46
4-1-1 XRD 分析之結果 46
4-1-2 SEM之結果 48
4-1-3 BET 分析之結果 50
4-1-4 特性分析總結 51
4-2 氣化產氫程序之效益評估 51
4-2-1 床質添加劑對固液氣三相產物之分析結果 51
4-2-2 床質添加劑對氣化產氫效益評估 56
第五章 結論與建議 59
5-1 結論 59
5-2 未來建議 60
參考文獻 61
Armor, J. N. (1998) "Applications of catalytic inorganic membrane reactors to refinery products." Journal of Membrane Science 147, 217-233.

Chen, G., Andries, J., Luo, Z. and Spliethoff, H. (2003) "Biomass pyrolysis/gasification for product gas production: the overall investigation of parametric effects." Energy Conversion and Management 44, 1875-1884.

Chen, G., Andries, J. and Spliethoff, H. (2003) "Catalytic pyrolysis of biomass for hydrogen rich fuel gas production." Energy Conversion and Management 44, 2289-2296.

Constantinou, D. A., Fierro, J. L. G. and Efstathiou, A. M. (2009) "The phenol steam reforming reaction towards H2 production on natural calcite." Applied Catalysis B: Environmental 90, 347-359.

Di Blasi, C. (1996) "Kinetic and Heat Transfer Control in the Slow and Flash Pyrolysis of Solids." Industrial & Engineering Chemistry Research 35, 37-46.

Geldart, D. (1986) Gas fluidization technology. John Wiley and Sons.

Guo, X. J., Xiao, B., Zhang, X. L., Luo, S. Y. and He, M. Y. (2009) "Experimental study on air-stream gasification of biomass micron fuel (BMF) in a cyclone gasifier." Bioresource Technology 100, 1003-1006.

Kim, P., Kim, Y., Kim, H., Song, I. K. and Yi, J. (2004) "Synthesis and characterization of mesoporous alumina with nickel incorporated for use in the partial oxidation of methane into synthesis gas." Applied Catalysis A: General 272, 157-166.

Levenspiel, O. (1998) Chemical reactions engineering. John Wiley & Sons.

Lv, P. M., Xiong, Z. H., Chang, J., Wu, C. Z., Chen, Y. and Zhu, J. X. (2004) "An experimental study on biomass air–steam gasification in a fluidized bed." Bioresource Technology 95, 95-101.

Mastellone, M. L., Zaccariello, L. and Arena, U. (2010) "Co-gasification of coal, plastic waste and wood in a bubbling fluidized bed reactor." Fuel 89, 2991-3000.

Meher Kotay, S. and Das, D. (2008) "Biohydrogen as a renewable energy resource—Prospects and potentials." International Journal of Hydrogen Energy 33, 258-263.

Nuernberg, G. D. B., Foletto, E. L., Campos, C. E. M., Fajardo, H. V., Carreno, N. L. V. and Probst, L. F. D. (2012) "Direct decomposition of methane over Ni catalyst supported in magnesium aluminate." Journal of Power Sources 208, 409-414.

Polychronopoulou, K., Bakandritsos, A., Tzitzios, V., Fierro, J. L. G. and Efstathiou, A. M. (2006) "Absorption-enhanced reforming of phenol by steam over supported Fe catalysts." Journal of Catalysis 241, 132-148.

Profeti, L. P. R., Ticianelli, E. A. and Assaf, E. M. (2008) "Co/Al2O3 catalysts promoted with noble metals for production of hydrogen by methane steam reforming." Fuel 87, 2076-2081.

Richardson, Y., Blin, J. and Julbe, A. (2012) "A short overview on purification and conditioning of syngas produced by biomass gasification: Catalytic strategies, process intensification and new concepts." Progress in Energy and Combustion Science 38, 765-781.

Saxena, R. C., Seal, D., Kumar, S. and Goyal, H. B. (2008) "Thermo-chemical routes for hydrogen rich gas from biomass: A review." Renewable and Sustainable Energy Reviews 12, 1909-1927.

Shi, L., He, Y. D., Xia, X. H., Jian, Z. M. and Liu, H. B. (2010) "High rate capability of Fe/FeO/Fe3O4 composite as anode material for lithium-ion batteries." Journal of the Iranian Chemical Society 7, 721-726.

Wang, G., Wang, H., Li, W., Ren, Z., Bai, J. and Bai, J. (2011) "Efficient production of hydrogen and multi-walled carbon nanotubes from ethanol over Fe/Al2O3 catalysts." Fuel Processing Technology 92, 531-540.

Wen, C. Y. and Yu, Y. H. (1966) "Mechanics of Fluidization." Chem. Eng. Progr. Symp. Ser. 62, 100-111.

Williamson, S. S., Lukic, S. M. and Emadi, A. (2006) "Comprehensive drive train efficiency analysis of hybrid electric and fuel cell vehicles based on motor-controller efficiency modeling." Power Electronics, IEEE Transactions on 21, 730-740.

Xiwei, X., Enchen, J., Wang, M. and Bosong, L. (2012) "Rich hydrogen production from crude gas secondary catalytic cracking over Fe/γ-Al2O3." Renewable Energy 39, 126-131.

Xu, C., Donald, J., Byambajav, E. and Ohtsuka, Y. (2010) "Recent advances in catalysts for hot-gas removal of tar and NH3 from biomass gasification." Fuel 89, 1784-1795.

王革華 (2008) 新能源概論. 五南出版社.

吳耿東 (2004) "生質能源-化腐朽為能源." 科學發展 383, 20-27.

吳耿東 (2007) "全球生質能源應用現況與未來展望." 林業研究專訊 14.

呂玲儀 (2007) "多元醇法製備CuCo/Al2O3 雙金屬觸媒對去除揮發性有機物之研究." 環境工程學系, 國立中興大學, 碩士論文.

呂錫民 (2009) "氣化技術." 科學發展 435.

李孟洲 (2007) "以微藻生產氫氣作為再生能源." From http://ind.ntou.edu.tw/~b0232/hydrogen.htm.

李定粵 (1991) 觸媒的原理與應用. 正中出版社.

柯賢文 (2006) "未來的氫能經濟." 科學發展 399, 69-75.

徐楠昌 (2005) "承載型銅鋅觸媒於甲醇蒸汽產氫重組的研究." 化學工程學所, 逢甲大學, 碩士論文.

馬凱文 (2009) "牡蠣殼製氧化鈣奈米顆粒在二氧化碳吸收的應用." 化學工程學系, 國立成功大學, 碩士論文.

馬隆龍 (2003) 生物質氣化技術及其應用. 化學工業出版社.

張筑暄 (2012) "碳分子篩選薄膜生質產氫氣體純化分離之應用." 環境工程學系, 國立中興大學, 碩士論文.

張嘉修 (2009) "生質氫能." 科學發展 433.

陳弘祥 (2005) "未來經濟主流的燃料─氫氣." From http://www.shs.edu.tw/works/essay/2005/10/2005103109220458.pdf.

陳欣宜 (2011) "觸媒氣化生質物產氫之研究." 環境工程學系, 國立中興大學, 碩士論文.

陳科豪 (2003) "以流體化床濾除煙道氣中粒狀物之研究." 環境工程學系, 國立中興大學, 碩士論文.

陳庭悅 (2006) "製氫觸媒介紹." 化工 53, 3-19.

陳煜昇 (2012) "低磷含量磷改質奈米氧化鋁作為觸媒轉化器清潔層之研究." 材料科學與工程研究所, 遠東科技大學, 碩士論文.

黃啟裕 (2008) "植物種苗生技." 農業生技產業季刊 13, 54-60.

經濟部能源局 (2012a) "能源統計月報." From http://web3.moeaboe.gov.tw/ECW/populace/home/Home.aspx.

經濟部能源局 (2012b) "能源產業技術白皮書." From http://web3.moeaboe.gov.tw/ECW/populace/home/Home.aspx.

葉韋志 (2005) "不同高徑生物反應器對固定化細胞醱酵產氫之影響." 化學工程學所, 逢甲大學, 碩士論文.

廖雋凱 (2012) "製備新型鐵基催化劑應用於稻稈氣化提昇產能效率之研究." 綠色能源科技所, 逢甲大學, 碩士論文.

劉彥佐 (2010) "不同型態SBA-15 擔載鎳銅觸媒於乙醇蒸氣重組催化反應之研究." 化學工程系, 國立臺灣科技大學, 碩士論文.

賴文漢 (2000) "CH4+CO2於ZrO2/SiO2與La2O3/Al2O3負載式鉑觸媒之重組反應研究." 化學工程研究所, 國立中央大學, 碩士論文.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top