1. 陳垂呈,高效率探勘高頻項目集之演算法,高雄師大學報:自然科學與科技類,第26卷,43-60頁,2009。
2. 陳政富,2003,雙門檻值制定應用於關聯法則之研究,碩士論文,大葉大學資訊管理學系碩士班,彰化。3. 湯瑪斯.戴文波特,江裕真譯,大數據@工作力:如何運用巨量資料,打造個人與企業競爭優勢,天下文化,2014。
4. 鄧安生,2002,新式探勘方法在關聯法則門檻值制定之研究,碩士論文,大葉大學資訊管理學系碩士班,彰化。5. 羅閔隆,2003,以經驗法則應用在關聯法則門檻值制定之研究,碩士論文,大葉大學資訊管理學系碩士班,彰化。6. Aalst, W. V. D., Zhao, J. L., Wang, H. J., Editorial: Business process intelligence: Connecting data and processes. ACM Transactions on Management Information Systems (TMIS), Vol.5, No.4, 18e, 2015.
7. Agrawal, R., Imieliński, T., & Swami, A., Mining association rules between sets of items in large databases. In Acm sigmod record, Vol.22, No.2, pp.207-216, 1993.
8. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., & Verkamo, A. I., Fast discovery of association rules. Advances in knowledge discovery and data mining, Vol.12, No.1, pp.307-328, 1996.
9. Agrawal, R., Srikant, R., Fast algorithms for mining association rules. The 20th VLDB Conference. Vol.1214, pp.487-499, 1994.
10. AL-HAMODI, A. A., LU, S., & AL-SALHI, Y. E., An Enhanced Frequent Pattern Growth Based on MapReduce for Mining Association Rules. International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.6, No.2, 2016.
11. B. Liu, W. Hsu, Y. Ma, Mining association rules with multiple minimum supports, Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-99), San Diego, CA, USA, 1999.
12. Berry, M. J., & Linoff, G., Data Mining Technique: for Marketing, Sales and Customer Support, Publishedby John Wiley & Sons, Inc., 1997.
13. Brijs, Tom., Retail market basket data set. In Workshop on Frequent Itemset Mining Implementations, 2003.
14. Brin, S, Motwani, R., and Silverstein, C., Beyond market baskets: generalizing association rules to correlations, in Proceedings of the 1997 ACM SIGMOD international conference on Management of data, pp. 265-276, 1997.
15. Chen, S. S., Huang, T. C. K. & Lin, Z. M., New and efficient knowledge discovery of partial periodic patterns with multiple minimum supports, Journal of Systems and Software, Vol.84, No.10, pp.1638-1651, 2011.
16. Dean, J., & Ghemawat, S., MapReduce: simplified data processing on large clusters. Communications of the ACM, Vol.51, No.1, pp.107-113, 2008.
17. Elgaml, E. M., Ibrahim, D. M., & Sallam, E. A., Improved FP-growth Algorithm with Multiple Minimum Supports Using Maximum Constraints. World Academy of Science, Engineering and Technology, International Journal of Computer, Electrical, Automation, Control and Information Engineering, Vol.9, No.5, pp.1087-1094, 2015.
18. Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P., From data mining to knowledge discovery in databases. AI magazine, Vol.17, No.3, pp.37, 1996.
19. Frawley, W. J., Paitetsky-Shapiro, G., & Matheus, C. J., Knowledge Discovery in Databases: An Overview, AAAI/MIT Press, Vol.13, No.3, pp.57-70, 1992.
20. Guil, F. & Marín, R., A theory of evidence-based method for assessing frequent patterns, Expert systems with applications, Vol.40, No.8, pp.3121-3127, 2013.
21. Han, J., & Kamber, M., Data mining: concepts and techniques ,the Morgan Kaufmann Series in data management systems, 2001.
22. Han, J., Kamber, M., & Pei, J., Data Mining: Concepts and Techniques, Published by Morgan Kaufmann, 2001.
23. Han, J., Pei, J., & Kamber, M., Data mining: concepts and techniques, Elsevier, 2011.
24. Han, J., Pei, J., & Yin, Y., Mining frequent patterns without candidate generation. In ACM Sigmod Record, Vol.29, No.2, pp.1-12, 2000.
25. Hu, Y. H., & Chen, Y. L., Mining association rules with multiple minimum supports: a new mining algorithm and a support tuning mechanism. Decision Support Systems, Vol.42, No.1, pp.1-24, 2006.
26. Hu, Y. H., Tsai, C. F., Tai, C. T. & Chiang, I. C., A novel approach for mining cyclically repeated patterns with multiple minimum supports, Applied Soft Computing, Vol.28, pp.90-99, 2015.
27. Hu, Y. H., Wu, F. & Liao, Y. J., An efficient tree-based algorithm for mining sequential patterns with multiple minimum supports, Journal of Systems and Software, Vol.86, No.5, pp.1224-1238, 2013.
28. Huang, T. C. K., Discovery of fuzzy quantitative sequential patterns with multiple minimum supports and adjustable membership functions, Information Sciences, Vol.222, pp.126-146, 2013.
29. Kleissner, C., Data Mining for the Enterprise, Proc. of the 31th Hawaii Int. Conf. on System Sciences(HICSS-31), Vol.7, pp.295-304, 1998.
30. Le, T., & Vo, B., An N-list-based algorithm for mining frequent closed patterns. Expert Systems with Applications, Vol.42, No.19, pp.6648-6657, 2015.
31. Leavitt, N., Storage Challenge: Where Will All That Big Data Go?. IEEE Computer, Vol.46, No.9, pp.22-25, 2013.
32. Lee, Y. C., Hong, T. P. & Lin, W. Y., Mining association rules with multiple minimum supports using maximum constraints, International Journal of Approximate Reasoning, Vol.40, No.1, pp.44-54, 2005.
33. Lin, K. W. & Chung, S. H., A fast and resource efficient mining algorithm for discovering frequent patterns in distributed computing environments, Future Generation Computer Systems, Vol.52, pp.49-58, 2015.
34. Liu, B., Hsu, W. & Ma, Y., Mining association rules with multiple minimum supports, Proc. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.337-341, 1999.
35. Liu, B., Hsu, W., Chen, S. & Ma, Y., Analyzing the subjective interestingness of association rules, IEEE Intelligent Systems, Vol.15, No.5, pp.47-55, 2000.
36. Michael Hahsler, Kurt Hornik, and Thomas Reutterer, Implications of probabilistic data modeling for mining association rules. In M. Spiliopoulou, R. Kruse, C. Borgelt, A. Nuernberger, and W. Gaul, editors, From Data and Information Analysis to Knowledge Engineering, Studies in Classification, Data Analysis, and Knowledge Organization, Springer-verlag, pp.598-605, 2006.
37. Mitra, S., Bande, S., Kudale, S., Kulkarni, A., & Deshpande, A. P. L., A. Efficient FP Growth using Hadoop-(Improved Parallel FP-Growth). International Journal of Scientific and Research Publications, 2014.
38. Ramakrishnudu, T., & Subramanyam, R. B. V., Mining Interesting Infrequent Itemsets from Very Large Data based on MapReduce Framework. International Journal of Intelligent Systems and Applications, Vol.7, No.7, pp.44, 2015.
39. Sadeq Darrab, Belgin Ergenç., Frequent Pattern Mining under Multiple Support Thresholds. WSEAS transactions on computer research, Vol.4, E-ISSN:2415-1513, 2016.
40. Taktak, W., & Slimani, Y., MS-FP-Growth: A multi-support Vrsion of FP-Growth Agorithm. International Journal of Hybrid Information Technology, Vol.7, No.3, pp.155-166, 2014.
41. Wang, C. S., Lin, S. L., Chiu, H. C., Juan, C. J. & He, X. Y., Is a medical examination necessary? Analysis of medical examination transactions through association mining using multiple minimum supports, Journal of Medical Imaging and Health Informatics, 2017.
42. Wu, X., Zhu, X., Wu, G. Q., & Ding, W., Data mining with big data. IEEE transactions on knowledge and data engineering, Vol.26, No.1, pp.97-107, 2014.
43. Yadav, R. & Garg, K., An empirical analysis of multiple level association rules mining method for feature extraction, World of Computer Science and Information Technology Journal (WCSIT), Vol.5, No.11, pp.165-171, 2015.