跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 02:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭立任
研究生(外文):Lin-ren Peng
論文名稱:鋁、鐵混凝劑加藥模式對天然濁水混沉除濁及降低殘餘鋁之影響-以石門淨水場為例
論文名稱(外文):Effect of Al- and Fe-based Coagulants dosing approach on coagulation performance for remaining turbidity and Al reduction in natural turbid water treatment
指導教授:王雅玢
指導教授(外文):Ya-Fen Wang
學位類別:碩士
校院名稱:中原大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:51
中文關鍵詞:聚氯化鋁氯化鐵混凝殘餘鋁
外文關鍵詞:polyaluminum chlorideferric chloridecoagulationresidual Al
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
國內淨水場處理程序中,混凝加藥過程仍多使用聚氯化鋁(PACl)混凝劑進行加藥,但原水濁度變動性高,使用聚氯化鋁處理高pH且低濁原水卻存在水中殘餘鋁超過飲用水標準限值問題,故許多淨水場已改用氯化鐵(FeCl3)或聚氯化鋁搭配氯化鐵混凝劑加藥,以降低水中殘餘鋁量合乎飲用水水質標準。本研究目的在於探討聚氯化鐵與聚氯化鋁單獨或共同加藥模式能否有效降低水中殘餘溶解鋁及對天然濁水進行有效除濁,比較不同聚氯化鋁與聚氯化鐵混凝劑在不同加藥比例下對天然濁水濁度去除率與殘餘鋁濃度。本研究使用不同商用聚氯化鋁混凝劑與氯化鐵混凝劑,調整兩者之加藥比例,以瓶杯試驗評估不同混凝加藥比例對不同濁度之天然原水除濁及降低水中殘餘溶解鋁之效能,並透過膠羽影像分析(FlocCAM)進行各種加藥模式之慢混膠羽粒徑監測,以探討混沉除濁效能及分析水中殘餘溶解鋁量。
研究結果顯示,原水鹼度範圍(40~66 mg/L as CaCO3)時,低濁原水( <5 NTU)採用PACl及FeCl3雙加藥模式對濁度去除效果較單獨加藥模式佳,單獨加入FeCl3 對濁度去除效果差,聚氯化鋁及氯化鐵共同加藥模式採1:1加藥量添加所生成之膠羽粒徑最大,雖無法大幅提升混沉濁度效能,但可有效降低水中殘餘鋁濃度,可符合飲用水水質標準。當原水濁度為20或80 NTU時,PACl搭配FeCl3雙加藥方式無法增加混沉除濁效能,其中含高單體鋁之PACl-W有較佳除濁成效,沒有殘餘鋁超標之問題。
In drinking water treatment process, polyaluminum chloride (PACl) coagulant is commonly used for coagulation dosing process. However, the turbidity of raw water is highly varied with time. Sometimes, low turbidity-containing raw water was treated with iron-based coagulants or dual dosing with PACl and FeCl3 coagulants to allow the residual aluminum in finished water comply with drinking water quality standards. The purpose of this study is to investigate FeCl3 and PACl alone add into raw water or combination, which type can be effectively reduce residual dissolved aluminum in water and effectively remove turbidity from natural turbid water. The turbidity removal rate and residual aluminum concentration of the natural turbid water at different dosing ratios.
Different commercial polyaluminum chloride coagulants and ferric chloride coagulants were used to adjust the dosing ratio of 1:0, 0:1, 1:1,and 1:2, which was evaluated by the jar test. The effect of coagulant dosing ratio on the removal of turbidity for natural raw water with different turbidity and the reduction of residual dissolved aluminum in water were evaluated, and the floc size at various dosing modes was analyzed by real-time floc image technology (FlocCAM) to explore coagulation performance for turbidity reduction and residual Al minimization.
The results show that raw water with alkalinity range (40~66 mg/L as CaCO3) for different natural turbidity water. For low turbidity watert (<5 NTU), the turbidity reduction by mixed PACl and FeCl3 dosing is superior to single dosing by itself. At such a condition, dual dosing make the biggest floc formation. However, the addition of FeCl3 alone has little reduction effect on residual turbidity of superntant at low turbidity. Although dual dosing at a given dosing ratio (Al: Fe = 1:1) could not enhance turbidity reduction substaintially, but it can improve the reduciton in residual Al in water to comply with drinking water standard. On the other hand, at higher turbidity (20 or 80 NTU) dual dosing can not greatly improve turbidity reduction, but PACl-W containing high monomeric Al content has better effect on turbidity reduciton and the corresponding residual Al comply with drinking water standard.
目錄
摘要 I
ABSTRACT II
目錄 IV
圖目錄 VI
表目錄 VI
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 淨水場清水鋁問題來源 3
2.2 淨水處理混凝劑種類及特性 5
2.2.1 鋁系混凝劑 5
2.2.2 鐵系混凝劑 5
2.2.3 鐵鋁系混凝劑雙重加藥 6
2.3、 改善淨水場清水殘餘鋁問題之策略 9
2.3.1 pH調整 9
2.3.2 混凝劑劑量調整 9
2.3.3 快混強度調整 10
2.3.4 過濾效能提升 10
2.3.5 改用鐵鹽混凝劑 10
2.3.6 雙重加藥 10
第三章 研究方法及步驟 12
3.1 研究架構 12
3.2 研究方法 14
3.2.1 原水水質特性分析 14
3.2.2 混凝瓶杯試驗 14
3.2.3 濁度分析 15
3.2.4 殘餘鋁、鐵濃度分析 15
3.3 混凝劑配製及特性分析 16
3.3.1 混凝劑配製 16
3.3.2 鋁物種型態分析 18
3.4 混凝膠羽特性分析 21
第四章 結果與討論 23
4.1 石門淨水場清水殘餘鋁來源及影響因子 23
4.2 鐵、鋁混凝劑加藥模式對混沉效能影響 28
4.2.1 鐵、鋁混凝劑加藥模式對濁度影響 28
4.2.2 鐵、鋁混凝劑加藥模式對膠羽粒徑影響 31
4.2.3 鐵、鋁混凝劑加藥模式對殘餘鋁量之影響 36
第五章 結論與討論 42
5.1 結論 42
5.2 建議 43
參考文獻 44

圖目錄
圖2.1 水中鋁物種之型態轉化途徑 4
圖3.1 研究架構 13
圖3.2 瓶杯實驗FlocCAMTM 裝置 21
圖4.1 石門場原水濁度、pH及與殘餘鋁量之關係(a)原水濁度、(b)原水pH 24
圖4.2 石門場混凝劑量與清水殘餘鋁量之關係 25
圖4.3 石門場沉澱水、過濾水及清水之殘餘濁度與殘餘總鋁含量關係圖 25
圖4.4 不同原水濁度下PACl、FeCl3混凝劑劑量與混沉上澄液
殘餘濁度之關係(a) 5 NTU; (b)20 NTU (c) 80 NTU 30
圖4.5 不同原水濁度下PACl、FeCl3混凝劑劑量與膠羽粒徑生成之關係(a) 5 NTU; (b)20 NTU (c) 80 NTU 34
圖4.6 不同原水濁度下混凝劑劑量與混沉上澄液殘餘鋁含量之關係
(a) 5 NTU、(b) 20 NTU、80NTU 37
圖4.7 不同濁度下混凝劑劑量與混沉上澄液pH值之關係
(a) 5 NTU、(b) 20 NTU、80NTU: 39
圖4.8不同原水濁度下各混凝劑加藥模式之混沉上澄液殘餘溶解鐵含量變化 41
表目錄
表2.1、混凝加藥方式對混凝特性之影響 8
表2.2、淨水場清水殘餘鋁控制策略 11
表3.1、聚氯化鋁鋁型態分布 17
表4.1、石門水場單元出水水質 27
表4.2、PACl、FeCl3單加藥及共同加藥劑之混凝膠羽外觀及粒徑 35
Busey, R. H., &Mesmer, R. E. (1977)“Ionization Equilibriums of Silicic Acid and Polysilicate Formation in Aqueous Sodium Chloride Solutions to 300°C."Inorganic Chemistry, 16, 10, 2444–2450.

Cheng, W. P. (2001)“Hydrolytic Characteristics of Polyferric Sulfate and Its Application in Surface Water Treatment."Separation Science and Technology, 36, 10, 2265–2277.
Ching, H. W., Tanaka, T. S., &Elimelech, M. (1994)“Dynamics of coagulation of kaolin particles with ferric chloride."Water Research, 28, 3, 559–569.
Driscoll, C. T., &Letterman, R. D. (1988)“Chemistry and fate of Al (III) in treated drinking water."Journal of Environmental Engineering, 114, 1, 21–37.
AWWA Research Committee on Coagulation (1979)“Committee Report-Organics Removal by Coagulation: A Review and Research Needs"American Water Works Association, 71, 10, 588-603.
Amirtharajah, A. & Kirk M . Mills (2015)“Rapid-mix design for mechanisms of alum coagulation."American Water Works Association, 74, 4, 210-216

Fu, Y., Yu, S., &Han, C. (2009)“Morphology and coagulation performance during preparation of poly-silicic-ferric (PSF) coagulant."Chemical Engineering Journal, 149, 1–3, 1–10.

Fu, Y., &Yu, S. L. (2007)“Characterization and coagulation performance of solid poly-silicic-ferric (PSF) coagulant."Journal of Non-Crystalline Solids, 353, 22–23, 2206–2213.
Fu, Y., Yu, S. li, Yu, Y. zhen, Qiu, L. ping, &Hui, B. (2007)“Reaction mode between Si and Fe and evaluation of optimal species in poly-silicic-ferric coagulant."Journal of Environmental Sciences, 19(6), 678–688.
Weitz, D. A., Huang, J. S., Lin, M. Y. & Sung, J. (1985) "Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids" Physical review Letters, 54(13), 1416–1419.
Wilfred, F., Langelier, H., Ludwig, F. & Russell, G. L. (1952) "Flocculation phenomena in turbid water clarification" American Society of Civil Engineers, 92, 44–54.
Wu, R. M., Lee, D. J., Waite, T. D. & Guan, J. (2002) "Multilevel structure of sludge flocs" Journal of Colloid and Interface Science, 252(2), 383–392.
Wu, X., Ge, X., Wang, D. & Tang, H. (2007) "Distinct coagulation mechanism and model between alum and high Al13-PACl" Colloids and Surfaces A: Physicochemical and Engineering Aspects, 305(1–3), 89–96.
Yan, M., Wang, D., Yu, J., Ni, J., Edwards, M. & Qu, J. (2008) "Enhanced coagulation with polyaluminum chlorides: Role of pH/Alkalinity and speciation" Chemosphere, 71(9), 1665–1673.
Yang, Z., Gao, B., Cao, B., Xu, W. & Yue, Q. (2011) "Effect of OH-/Al3+ ratio on the coagulation behavior and residual aluminum speciation of polyaluminum chloride (PAC) in surface water treatment" Separation and Purification Technology, 80(1), 59–66.
Ye, C., Wang, D., Shi, B., Yu, J., Qu, J., Edwards, M. & Tang, H. (2007) "Alkalinity effect of coagulation with polyaluminum chlorides : Role of electrostatic patch" Colloids and Surfaces A: Physicochemical and Engineering Aspects, 294, 163–173.
Ying, F., Bao-yu, G., Yi-feng, Z., Xin-yu, Z. & Nan, S. (2011) "Organic modifier of poly-silicic-ferric coagulant: Characterization, treatment of dyeing wastewater and floc change during coagulation" Desalination, 277(1–3), 67–73.
Yu, J. F., Wang, D. S., Ge, X. P., Yan, M. Q. & Yang, M. (2006) "Flocculation of kaolin particles by two typical polyelectrolytes: A comparative study on the kinetics and floc structures" Colloids and Surfaces A: Physicochemical and Engineering Aspects, 290(1–3), 288–294.
台灣自來水公司,「淨水場清水鋁含量改善對策」,2013年。
戴雅英、邱惠琴,「聚鐵矽型混凝劑的形態分析及性能研究」,環境污染治理技術與設備,2005年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊