跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/01 04:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴暘允
研究生(外文):LAI,YANG-YUN
論文名稱:應用於DC-DC降壓轉換器之以計數器為基礎的數位脈波寬度調變器
論文名稱(外文):Counter-Based Digital Pulsewidth Modulator For DC-DC Buck Converter
指導教授:林佑昇林佑昇引用關係
指導教授(外文):LIN,YOU-SHENG
口試委員:孫台平 (Tai-Ping Sun)陳昶至
口試委員(外文):SUN,TAI-PINGCHEN,CHANG-CHIH
口試日期:2017-12-26
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:66
中文關鍵詞:數位脈波寬度調變器直流-直流降壓轉換器現場可規劃邏輯閘陣列
外文關鍵詞:Digital Pulsewidth ModulatorDC-DC Buck ConverterField-Programmable Gate Array
相關次數:
  • 被引用被引用:0
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
在現今,直流對直流降壓轉換器廣泛的應用在各種電子電路中,而我設計的直流降壓轉換器,是使用數位的控制方式,並且使用數位脈波寬度調變器,來調變電壓。
而本論文採用的是以計數器為基礎的脈波寬度調變器,具有高解析度及較低的硬體成本。
本論文的數位式直流降壓轉換器,是由降壓轉換器的基本架構以及數位脈波寬度調變器所組成的。數位脈波寬度調變器實現於FPGA開發版,並且與直流降壓轉換器的PCB板做整合及量測。然後將數位脈波寬度調變器以台積電180nm的製程並且使用Cell-Based Design flow的設計方式去做下線晶片的動作,最後再與直流降壓轉換器的PCB板做整合及量測。最後實驗量測結果顯示,我可將輸入電壓1.8伏特~3.3伏特降到0.8伏特~2.5伏特。當操作於輸入電壓為3.3伏特與輸出電壓為1.8伏特的條件下,我的輸出漣波電壓為80毫伏特以及轉換效率為89.5%。

In today's DC-DC buck converter is widely used in a variety of electronic circuits, and I designed the DC buck converter is the use of digital control, and the use of digital pulse width modulator to modulate the voltage. This paper presents a counter-based digital pulse width modulator with high resolution and low hardware costs.
The digital DC buck converter in this thesis is composed of the basic structure of the buck converter and digital pulse width modulator. I implemented the digital pulse width modulator in the FPGA development board and integrated it with the PCB of the DC buck converter. Then the digital pulse width modulator to TSMC 180nm process and the use of Cell-Based Design flow design approach to tape-out. Finally, with the PCB of the DC buck converter integration and measurement. The final experimental measurements show that I can drop the input voltage from 1.8V~ 3V to 0.8V~ 2.5V. When operating at 3.3V input voltage and 1.8V output voltage, output ripple voltage is no higher than 100 millivolts and the conversion efficiency can reach 89.5%.

Table of Contents
致謝詞………………………..……………………………..………i
摘要…………………………………………………………….….ii
Abstract…………………………………………………..………iii
Table of Contents………………………....……………...……….v
List of Tables………………..…………...……….…...…..……..viii
List of Figures…………………...……….……………...…..……ix
Chapter 1 Introduction………...…………………………………1
1.1 Background and Motivation……………………………….……………...1
1.2 Thesis Organization………………………………………….....................3
Chapter 2 Introduction of DC-DC Buck Converter…………….4
2.1 Regulator types introduced………………………. ……………………….4
2.2 Low Dropout Linear Regulator…………………. ……………………….4
2.3 Working principle of DC-DC Buck Converter………….……………….6
2.4 Definition of DC-DC Buck Converter characteristic parameters…….……9
2.4.1 Line Regulation……………………………………….………………....9
2.4.2 Load Regulation……………………………………….……………….10
2.4.3 Transient Load Response…………………………….………………...10
2.4.4 Output Ripple Voltage……………………………….…………………12
2.4.5 Power Conversion Efficiency………………………….……………….13
Chapter 3 Circuit structure of traditional DC-DC Buck Converter………………………………………………14
3.1.1 Voltage Control Mode……………………………………………….....14
3.1.2 Current Control Mode………………………………………………..17
3.2 Traditional Digital Buck Converter……………………………….19
3.2.1 Time-Based PID Compensator for Buck Converter………………….21
3.3 Digital pulse width modulator……………………………………….22
3.3.1 Counter-Based DPWM…………………………………………….23
3.3.2 Delay-Line DPWM……………………………………………….24
3.3.3 Hybrid DPWM………………………………………………….26
Chapter 4 Circuit Design of Digitally Controlled DC-DC Buck Converter………………………………………………28
4.1 Design concept and circuit architecture………………………………...28
4.2 Circuit Structure and Working Principle of New Digital Pulse Width Modulation Controller………………………………………………………29
4.3 New Digital Pulse Width Modulator Sub-Circuit Introduction…...……..31
4.3.1 Phase Detector………………………………………………………...31
4.3.2 Finite State Machine…………………………………………………...33
4.3.3 8-bit UP Counter……………………………………………………...34
4.3.4 8-bit Comparator……………………………………………………...35
4.3.5 SR Latch……………………………………………………………...36
Chapter 5 New Buck Converter using FPGA implementation and measurement…………………………37
5.1 Introduction……………………………………………………………...37
5.2 Field-Programmable Gate Array introduction………………...…………38
5.3 Buck Converter Circuit board....................................................................39
5.3.1 SI4724………………………………………………...…………….…40
5.3.2 Voltage Controlled Oscillator (TLC2933A)…………………………...40
5.3.3 Passive Components (Inductors/Capacitors)…………………………...40
5.4 Buck Converter simulation…....................................................................40
5.5 New digital buck converter measurement results.......................................42
Chapter 6 New Buck Converter using Cell-Based Design Flow implementation and measurement ……………………………48
6.1. Introduction…………………………………………………………...48
6.1.1 Cell-Based Design Flow……………………………………………...48
6.2 Implement for DC-DC Buck Converter……………………………...54
6.3 Measurement of DC-DC Buck Converter……………………………...56
6.3.1 Testing setup…………………………………………………………...57
6.4 Simulation Result………………………………………………………...60
6.5 Measurement Result……………………………………………………62
References……………………………….………………………..64

List of Tables
Table 2.1 Regulator comparison table……………….……………………………..….….4
Table 3.1 Comparison of Voltage Control Mode and Current Control Mode……………19
Table 3.2 Comparison of Counter-Based DPWM and Delay-Line DPWM………...……26
Table 5.1 Buck Converter Board Specifications………...……………………………..…42
Table 5.2 Digital Buck Converter Performance Specifications…………………..………46
Table 6.1 EDA tools for cell based design flow……………………………………..……53

List of Figures
Fig. 1.1 Smart phone power management block diagram………………….……………....2
Fig. 2.1 Low dropout Linear Regulator……………...………….….….………………….. 5
Fig. 2.2 Synchronous Buck converter………………...………….….….………………….. 6
Fig. 2.3 Buck Converter………………….……..…………………...………………………8
Fig. 2.4 Synchronous Buck Converter Transient Response, (a) Equivalent circuit for load current variation, (b) Load current variation versus output voltage………………………..11
Fig. 2.5 Buck converter output ripple voltage………………………………………...……12
Fig. 3.1 DC-DC Buck Converter control block diagram……………………………...….14
Fig. 3.2 A conventional Voltage Control Mode Buck Converter circuit architecture, (a) Circuit architecture, (b) The duty cycle waveform….......................................................….16
Fig. 3.3 A conventional Current Control Mode Buck Converter circuit architecture, (a) Circuit Architecture, (b) The duty cycle waveform…...………………………………….18
Fig. 3.4 Traditional Digital Control Buck Converter Architecture……………………...….20
Fig. 3.5 Time-based compensator Buck Converter , (a) Circuit architecture, (b) Timing diagram………………………………………………………………………………...….22
Fig. 3.6 Counter-Based DPWM (a) Circuit Architecture (b) Timing Diagram……….…....24
Fig. 3.7 Delay-Line DPWM, (a) Circuit Architecture, (b) Timing Diagram…………….25
Fig. 3.8 Hybrid DPWM , (a) Circuit Architecture, (b) Timing Diagram………………….27
Fig. 4.1 New digital Buck Converter Architecture………………………………………...28
Fig. 4.2 Circuit Architecture of New Digital Pulse Width Modulator……………………...29
Fig. 4.21 New digital step-down converter circuit flow chart……………………………...30
Fig. 4.3.1 Phase Detector, (a) Circuit Architecture, (b) Timing Diagram…………………32
Fig. 4.3.11 Phase Detector simulation waveform………………………………..…………33
Fig. 4.3.2 State picture of Finite State Machine………………………………..…………33
Fig. 4.3.21 Finite State Machine simulation waveform………………………..…………33
Fig. 4.3.3 8-bit UP Counter simulation waveform………………………..…………34
Fig. 4.3.4 8-bit Comparator simulation waveform………………………..…………35
Fig. 4.3.5 SR Latch simulation waveform………………………………..…………36
Fig. 5.1 New Digital Buck Converter Circuit Architecture……………………..…………37
Fig. 5.2 Altera DE2 FPGA Development kit…………………………………..…………38
Fig. 5.3 Buck Converter circuit board…………………………………………..…………39
Fig. 5.4 Netlist of DPWM circuit…………………………………………..…………41
Fig. 5.5 DPWM Simulation, (a) Duty=25%, (b) Duty=50%, (c) Duty=75%………………41
Fig. 5.6 Digital Buck Converter Measurement Environment…………………..…………43
Fig. 5.7 Measurement result 3.3v to 1.8v, Duty=55%…………………………..…………44
Fig. 5.8 DPWM Measurement result, (a) Duty=25%, (b) Duty=50%, (c) Duty=75%, (d) Duty=80%……………………………………………………………………..…………46
Fig. 6.1.1 Cell-Based Design flow of digital circuit design……………………..…………49
Fig. 6.1.2 RTL Level Design Flow……………………………………………..…………50
Fig. 6.1.3 From RTL to Gate-level Using Logic Synthesis……………………..…………51
Fig. 6.1.4 From Pre-layout Gate-level Netlist to Layout………………………..…………52
Fig. 6.1.5 Auto Placement & Route Flow……………………………………..…………52
Fig. 6.2.1 Layout of DPWM…………………………………………………..…………55
Fig. 6.2.2 Wire bonding SB18 for DPWM……………………………………..…………55
Fig. 6.2.3 The actual picture of the chip………………………………………..…………56
Fig. 6.3.1 Automatic Test Equipment Testing flow……………………………..…………57
Fig. 6.3.2 AdvantestV93000 PS1600…………………………………………..…………58
Fig. 6.3.3 The procedure of test flow…………………………………………..…………58
Fig. 6.4.1 Post-Layout simulation……………………………………………..…………61
Fig. 6.4.2 Post-Layout simulation……………………………………………..…………61
Fig. 6.5.1 Measurement result, (a), (b)…………………………………………..…………62

References
[1]LDO regulator, Retrieved June 2011, from
http://www.circuitstoday.com/ldo-regulator
[2]顏智鴻。2015。High Efficiency Synchronous CMOS Switching Buck Regulator with Current Limit and Frequency Divider Mode Technique。碩士論文。國立中央大學電機系研究所。
[3]梁適安 交換式電源供給器之理論與實務設計,全華出版社, 2008
[4]蔡宇傑。2014。High-Resolution Time-Adder-Based Digital Pulsewidth Modulator for DC-DC Buck Converter Applications。碩士論文。南投縣:國立暨南國際大學電機系研究所。
[5]Ho, E.N.Y., Mok, P.K.T., “Design of PWM Ramp Signal in Voltage-Mode CCM Random Switching Frequency Buck Converter for Conductive EMI Reduction”, IEEE Transactions on Circuits and Systems, pp. 505-515, Feb 2013.
[6]R. W. Erickson and D. Maksimovic, Fundamentals of power Electronics, Second Edition. Kluwer Academic Publishers, 2001.
[7]Robert Mammano, “Switching Power Supply Topology Voltage Mode vs. Current Mode”, Texas Instruments, Sept 1999.
[8]Chen W.-C., Chen C.-C., Yao C.-Y., Yang, R.-J., “A Fast-Transient Wide-Voltage Range Digital-Controlled Buck Converter With Cycle-Controlled DPWM”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pp.1, 2015.
[9]Qadeer Khan, Seong Joong Kim, Mrunmay Talegaonkar2 , Amr Elshazly1 , Arun Rao3 , Nathanael Griesert3 , Greg Winter3 , Willam McIntyre3 , and Pavan Kumar Hanumolu2, “A 10-25MHz, 600mA Buck Converter using Time-Based PID Compensator with 2μA/MHz Quiescent Current, 94% Peak Efficiency, and 1MHz BW”, IEEE VLSI Circuit Digest of Technical Papers, July 2014
[10]林晏生。2007。Digitally Controlled PWM for DC-DC Converter。碩士論文。國立交通大學電機系研究所。
[11]Hsin-Chuan Chen, “Resolution Extension of Counter-Based DPWM Using Self-Triggered Method”, IEEE International Conference, June 2015.
[12]Li Peng, Xuejuan Kong, Yong Kang, and Jian Chen, Senior Member, “A novel PWM technique in digital control and its application to an improved DC/DC converter”, IEEE College of Electrical & Electronic Engineering, Aug 2002.
[13]B. J. Patella, A. Prodic, A. Zirger, and D. Maksimovic, "High-frequency digital PWM controller IC for DC–DC converters", IEEE Trans. Power Electron., vol. 18, no. 1, pp. 438–446, Jan. 2003.
[14]Chang, R.C., Lung-Chih Kuo, “A differential type CMOS phase frequency detector”, Proceedings of the Second IEEE Asia Pacific Conference on ASICs, Aug 2000.
[15]Altera, DE2i-150 FPGA Development Kit, from:
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=11&No=529&PartNo=1
[16]Vishay Siliconix, “N-Channel Synchronous MOSFETs With Break-Before-Make”, Retrieved May 12 2015, from https://www.vishay.com/docs/71863/si4724.pdf
[17]Texas Instruments, “HIGH PERFORMANCE PHASE LOCKED LOOP”, Retrieved May 12 2015, from http://www.tij.co.jp/jp/lit/ds/symlink/tlc2933a.pdf
[18]陳鍾誠的網站, Altera Quartus II + Modelsim, from:
http://ccckmit.wikidot.com/aq:quartus
[19]郭仕軒。2015。Design of Microcontroller for Intra-Body Communication (IBC) Platform Application。碩士論文。國立暨南國際大學電機系研究所。
[20]CIC Referenced Flow for Cell-based IC Design, Retrieved May 2008, from http://speed.cis.nctu.edu.tw/~ydlin/course/cn/nsd2009/CIC_Reference_Design_Flow.pdf
[21]CIC News, Advantest V93000 PS1600基礎操作簡介, from https://www.cic.org.tw/CommonUtilServlet?type=2.4&file=1444.pdf
[22]國家晶片系統設計中心, 下線申請注意事項, from www2.cic.org.tw/~cis/chipapply/doc/handout.pdf

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top