跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 08:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳冠霆
研究生(外文):Guan-Ting Wu
論文名稱:產品零件變更計劃:應用模糊理論、田口方法及基因演算法進行零件供應商評選
論文名稱(外文):Product-Part-Change Planning:Part Supplier Selection by Using Fuzzy Theory, Taguchi Method and Genetic Algorithm
指導教授:王河星王河星引用關係
口試委員:陳琨太車振華
口試日期:2007-06-08
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:工業工程與管理研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:68
中文關鍵詞:產品零件變更模糊理論田口方法基因演算法
外文關鍵詞:Product Part ChangeFuzzzy TheoryTaguchi MethodGenetic Algorithm
相關次數:
  • 被引用被引用:1
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來市場競爭激烈、產品生命週期縮短與顧客意識抬頭,導致產品零件變更(Product Part Change;PPC)次數頻繁。當PPC計劃確定要執行時,如何在短時間內決定出最適於生產時之各零件供應商,實為現今企業最重視的問題。這些PPC所衍生的問題也是現今許多企業所要去面對的。因此,本研究首先以物料清單(Bill Of Material;BOM)進行產品的零件展開,並評估各個零件之間的組裝關係,然後透過模糊理論(Fuzzy Theory)取得每項零件供應商參數的確切值,並建構出一套符合多階產品零件的數學模式,其中考量零件供應商之成本、品質及時間,作為供應商評選參數。利用基因演算法(Genetic Algorithm;GA)進行最佳化零件供應商評選模式的求解,藉由田口方法(Taguchi method)求得演算法參數的最佳組合,並測試15組不同的權重設定之案例,以敏感度分析找出權重對於模式的影響。最後將本研究與Lingo所得結果做一比較與分析,結果顯示本研究基因演算法在求解不同例子中,部份例題所得到的解優於Lingo所求得的最佳解。本研究能提供一個完整的架構給予企業決策者在PPC之後,對於企業本身在短時間所發生零件汰換的情況下,有一個參考的依據,並提供一項快速且精確的PPC計劃。
In recent years, product-part-change (PPC) becomes more and more frequent thanks to the fierce market competition, shortening product life and rising consumer consciousness. When we execute PPC planning, how to use the shortest time to decide the most suitable part suppliers which becomes the serious lessons that enterprises focus on. Many exstended issues by PPC also become the major issue faced by various enterprises. Therefore, we first lists parts through Bill Of Material(BOM) in order to assess the assembling relationship of various parts. Then we get the fuzzy value of each part supplier’s parameter through Fuzzy Theory, and constructs an optimal mathematical model suitable for multi-pahse products’ parts. We are considering cost, quality level and delivery of each part supplier as selection parameters. Genetic algorithm was used to solve optimal part supplier selection model and through Taguchi method to find out the best combination of algorithm’s parameter. Furthermore, we test the 15 cases that with various weight set, and using Sensitivity Analysis to find out the weight effect on optimal mathematical model. Finally, compare the result from Genetic algorithm with Lingo and analyse them. The result shows that some of the solutions from Genetic algorithm are best than Lingo among these 15 cases. This research can provide decision makers an integrated structure after PPC, as well as being a standard when enterprises occur part change in the short time. by the way, we assisting decision-makers in acquiring the purchase information of best suppliers promptly and precisely.
摘 要 .................................................i
ABSTRACT ................................................ii
誌 謝 ................................................iv
目 錄 .................................................v
表目錄 ................................................vi
圖目錄 ...............................................vii
第一章 研究動機與目的 ...............................1
第二章 文獻探討 ........................................3
2.1 產品型態變更 ...............................3
2.2 零件供應商評選 ...............................4
2.3 模糊理論 ........................................7
2.4 基因演算法 ...............................9
2.5 田口方法 .......................................11
第三章 問題描述與研究假設 ..............................14
第四章 最佳化零件供應商評選數學模式 .....................15
第五章 PPC模式發展 .......................................23
第六章 實證案例與結果分析 ..............................33
第七章 結論與建議 .......................................60
7.1 結論 .......................................60
7.2 後續研究與建議 ..............................61
參考文獻 ................................................62
[1]Alan, F., "Case experience of implementing configuration management in a UK shipbuilding organization," International Journal of Project Management, Vol. 14, 1996, pp.221-230.
[2]Barbarosoglu, G., and Yazgac, T., "An application of the analytic hierarchy process to the suplier selection problem," Production and Inventory Management Journal, Vol. 38, 1997, pp.14-21.
[3]Barzizza, R., Caridi, M., and Cigolini, R., "Engineering change: A theoretical assessment and a case study," Production Planning and Control, Vol. 12, 2001, pp.717-726.
[4]Bonneville, F., Perrard, C., and Henrioud, J. M., "A genetic algorithm to generate and evaluate assembly plans," Proceedings of the IEEE Symposium on Emerging Technology and Factory Automation, Besancon, 1995, pp.231-239.
[5]Cheng, B. W., and Chang, C. L., "A study on flowshop problem combining Taguchi experimental design and genetic algorithm," Expert Systems with Applications, Vol. 32, 2007, pp.415-421.
[6]Cochran, J. K., and Chen, H. N., "Fuzzy multi-criteria selection of object-oriented simulation 550 software for production system analysis," Computers & Operations Research, Vol. 32, 2005, pp.153-168.
[7]Cunningham, M., Higgins, P., and Browne, J., "A decision support tool for planning bill-of-material," Production Planning and Control, Vol. 7, 1996, pp.312-328.
[8]Cohon, J. L., Multiobjective Programming and Planning, New York: Academic Press, 1978.
[9]Dai H. R., Wang, L. P., and Qiu, F. Y., "An algorithm for supplier selection using AHP and linear programming," Journal of Zhejiang University of Technology, Vol. 32, 2004, pp.509-515.
[10]Dickson, G. W., "An analysis of vendor selection systems and decisions," Journal of Purchasing, Vol. 2, 1966, pp.5-17.
[11]Dowlatshahi, S., "Designer-buyer-supplier interface: theory versus practice," International Journal of Production Economics, Vol. 63, 2000, pp.111-130.
[12]Ehie, I. C., "Determinants of success in manufacturing outsourcing decisions: a survey study," Production and Inventory Management Journal, Vol. 42, 2001, pp.31-39.
[13]Goldberg, D. E., Genetic Algorithm in Search Optimization and Machine Learning, USA: Addison-Wesley Longman, 1989.
[14]Hong, D. S., and Cho, H. S., "A genetic-algorithm-based approach to the generation of robotic assembly sequences," Control Engineering Practice, Vol. 7, 1999, pp.151-159.
[15]Jesper, M., "Framework for outsouring manufacturing: strategic and operational implications," Computers in Industry, Vol. 49, 2002, pp.59-75.
[16]Karpak, K., and Kasuganti, R. R., "An application of visual interactive goal programming: a case in supplier selection decisions," Journal of Multi-criterion Decision Making, Vol. 8, 1999, pp.93-105.
[17]Keller, R., Eckert, C. M., and Clarkson, P. J., "Multiple views to support engineering change management for complex products," International Conference on Coordinated & Multiple Views, London, 2005, pp.33-41.
[18]Kumar, M., Vrat, P., and Shankar, R., "A multi-objective interval programming approach for supplier selection problem in a supply chain," Proceedings of the International Conference on E-Manufacturing: An Emerging Need for 21st Century World Class Enterprises, Bhopal, 2002, pp.101-106.
[19]Ladd, S. R., Genetic Algorithms in C++, USA: M&T Books, 1996.
[20]Liaoa, Z., and Rittscherb, J., "A multi-objective supplier selection model under stochastic demand conditions," International Journal of Production Economics, Vol. 105, 2006, pp.150-159.
[21]Loch, H., "Accelerating the process of engineering chang orders: capacity and congestion effects," Production and Inventory Management, Vol. 16, 1999, pp.145-159.
[22]Manfred, S., and Hermann, B., "General aspects of configuration management," International Journal of the Advanced Manufacturing Technology, Vol. 15, 1997, pp.331-333.
[23]Maurizio, B., and Alberto, P., "From traditional purchasing to supplier management: a fuzzy logic-based approach to supplier selection," International Journal of Logistics: Research and Applications, Vol. 5, 2002, pp.235-256.
[24]Mohanty, R. P., and Deshmukh, S. G., "Using of analytic hierarchic process for evaluating sources of supply," International Journal of Physical Distribution & Logistics Management, Vol. 23, 1993, pp.22-28.
[25]Monczka, R., Trent, R., and Handfield, R., Purchasing and Supply Chain Management, Texas: South-Western College, 2002.
[26]Moon, J. H., and Kang, C. S., "Application of fuzzy decision making method to the evaluation of spent fuel storage options," Progress in Nuclear Energy, Vol. 39, 2001, pp.345-351.
[27]Nagasawa, S., "Application of fuzzy theory to value engineering," Computers and Industrial Engineering, Vol. 33, 1997, pp.565-568.
[28]Nydick, R. L., and Hill, R. P., "Using the analytic hierarchy process to structure the supplier selection procedure," Internation Journal of Purchasing and Materials Management, Vol. 28, 1992, pp.31-36.
[29]Özdamar, L., and Tülin, Y., "Capacity driven due date settings in make-to-order production systems," International Journal of Production Economics, Vol. 49, 1997, pp.29-44.
[30]Pearson, J. N., and Ellram, L. M., "Supplier selection and evaluation in small versus large electronics films," Journal of Small Business Management, Vol. 33, 1995, pp.53-65.
[31]Petrovic, S. and Fayad, C., "A fuzzy shifting bottleneck hybridised with genetic algorithm for real-world job shop scheduling," in Mini-EURO Conference, Managing Uncertainty in Decision Support Models, 2004, pp.1-6.
[32]Randy, L. H., and Sue, E. H., Practical Genetic Algorithms, USA: John Willey & Sons, 1998.
[33]Ricardo, E., Bardia, K., and Keith, O., "Delivery performance in vendor selection decisions," European Journal of Operational Research, Vol. 176, 2007, pp.534-541.
[34]Rouibah, K., and Caskey, K., "Change management in concurrent engineering from a parameter perspective," Computer in Industry, Vol. 50, 2003, pp.15-34.
[35]Schaeffer, C., "Performance measurement drives enterprise integration," 11E Solutions, Michigan, 1996, pp.20-27.
[36]Sebaaly, M. F., and Fujimoto, H., "A genetic planner for assembly automation," Poceedings of the IEEE Conference on Evolution, Nagoya, 1996, pp.401-406.
[37]Senin, N., Groppetti, R., and Wallace, D. R., "Concurrent assembly planning with genetic algorithms," Robotics and Computer Integrated Manufacturing, Vol. 16, 2000, pp.65-72.
[38]Show, L. L., and Juang, J. C., "A two-phase optimization algorithm in controller synthesis," Proceedings of the American Control Conference, Chicago, 2000, pp.914-918.
[39]Srinivas, M., and Patnaik, L. M., "Genetic algorithms: a survey," IEEE Computer, Vol. 27, 1994, pp.17-26.
[40]Taguchi, G., and Konishi, S., Orthogonal Arrays and Linear Graphs, MI: American Supplier Institue, 1987.
[41]Taguchi, G., Chowdhury, S. and Wu, Y., Taguchi’s Quality Ebgineering Handbook, USA: John Willey & Sons, 2004.
[42]Thierens, D., and Goldberg, D. E., "Mixing in genetic algorithms," Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, 1993, pp.38-47.
[43]Thomas, L., Fazio, D., and Whitney, D.E., "Simplified generation of all mechanical assembly sequences," IEEE Journal of Robotics and Automation, Vol. 3, 1987, pp.640-658.
[44]Tseng, H. E., Li, J. D., and Chang, Y. H., "Connector-based approach to assembly planning using a genetic algorithms," International Journal of Production Research, Vol. 42, 2004, pp.2243-2261.
[45]Unal, R., Stanley, D.O., and Joyner, C.R., "Propulsion system design optimization using the taguchi method," IEEE Transactions on Engineering Management, Vol. 40, 1993, pp.315-322.
[46]Wadhwa, V., and Ravindran, A. R., "Vendor selection in outsourcing," Computers & Operations Research, In Press, doi: 10.1016/j.cor.2006.01.009, 2006.
[47]Wang, D. W., Yung, K. L., and Ip, W. H., "A heuristic genetic algorithm for subcontractor selection in global manufacturing environment," IEEE Transactions on Systems, Vol. 31, 2001, pp.189-198.
[48]Wang, H. S., and Che, Z. H., "An integrated model for supplier selection decisions in configuration changes," Expert Systems with Applications, Vol. 32, 2007, pp.1132-1140.
[49]Weber, C. A., Current, J. R., and Benton, W. C., "Vendor selection criteria and methods," European Journal of Operational Research, Vol. 50, 1991, pp.2-18.
[50]Weber, C. A., Current, J. R., and Desai, A., "Vendor: a structured approach to vendor selection and negotiation," Journal of Business Logistics, Vol. 21, 2000, pp.135-167.
[51]Weber, C. A., and Current, J., "A multi-objective approach to vendor selection," European Journal of Operational Research, Vol. 68, 1993, pp.173-184.
[52]Wei, C. W., Developing a computer-aided part-change system based on graphic article, National Taipei University of Technology, Taiwan, 2005.
[53]Wilson, E., "The relative importance of supplier selection criteria: a review and update," International Journal of Purchasing and Material Management, Vol. 30, 1994, pp.35-41.
[54]Yang, T., Lin, H. C., and Chen, M. L., "Metamodeling approach in solving the machine parameters optimization problem using neural network and genetic algorithms: A case study," Robotics and Computer-Integrated Manufacturing, Vol. 22, 2006, pp.322-331.
[55]Zadeh, L. A., "The concept of a linguistic variable and its application to approximate reasoning," Information Science, Vol. 8, 1975, pp.199-249.
[56]Zhang, J., Wang, Q., Wan, L. and Zhong, Y., "Configuration-oriented product modeling and knowledge management for made-to-order manufacturing enterprises," International Journal of the Advanced Manufacturing Technology, Vol. 25, 2005, pp.41-52.
[57]Zhang, Q., "Evolutionary algorithm with experimental design technique," World Scientific and Enginerring Society Press, 2001, pp.213-218.
[58]Zhiying, L. and Jens, E., "A multi-objective supplier selection model under stochastic demand conditions," International Journal of Production Economics, Vol. 105, 2007, pp.150-159.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top