1.Amoo, O.M., Fagbenle, R.L.,“Renewable municipal solid waste pathways for energy generation and sustainable development in the Nigerian context,”Int. J. Energy Environ. Eng, vol.4, 2013, pp.42-59.
2.Arafat, H.A., Jijakli, K., Ahsan, A., Environmental performance and energyrecovery potential of five processes for municipal solid waste treatment. J. Clean. Prod. 105, 2015, pp.233-240.
3.Astrup, T., Møller, J., Fruergaard, T., Incineration and co-combustion of waste: accounting of greenhouse gases and global warming contributions. Waste Manage. Res, vol.27, 2009, pp.789-799.
4.Björklund, A., G. Finnveden, Recycling revisited—life cycle comparisons of waste management strategies, Resour. Conserv. Recycl. vol.44, 2005, pp.309-317.
5.Chen, L-L., Tseng, C-H.and Shih, Y-H. ‘Climate-related economic losses in Taiwan’, Int. J.Global Warming, vol. 11, No. 4, 2017, pp.449–463.
6.Costanza, R., & Gottlieb, S., Modelling ecological and economic systems with STELLA: Part II. Ecological Modelling, vol.112, no. 2, 1998, pp.81-84.
7.Damgaard, A., C. Riber, T. Fruergaard, T. Hulgaard, T.H. Christensen, Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration, Waste Manage. vol.30, 2010, pp.1244-1250.
8.Ding, Z., Yi, G., Tam, V. W. Y., & Huang, T., A system dynamics-based environmental performance simulation of construction waste reduction management in China. Waste Management, vol.51, 2016, pp.130-141.
9.Eriksson, O., G. Finnveden, Plastic waste as a fuel–CO2-neutral or not? Energy Environ. Sci. vol.2, 2009, pp.907-914.
10.ERM, Impact of Energy from Waste and Recycling Policy on UK Greenhouse Gas Emissions. Department for Environment, Food and Rural Affairs, London, 2006.
11.Gidarakos, E., G. Havas, P. Nitzamilis, Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete, Waste Manage. vol.26, 2006, pp.668-679.
12.Gohlke, O., Efficiency of energy recovery from municipal solid waste and the resultant effect on the greenhouse gas balance, Waste Manage. Res. vol.27, 2009, pp.894-906.
13.Hossian, H.M.Z., Q.H. Hossain, M.M.U. Monir, M.T. Ahmed, Municipal solid waste (MSW) as a source of renewable energy in Bangladesh: Revisited, Renew. Sustain.Energy Rev, vol.39, 2014, pp.35-41.
14.IPCC, IPCC guidelines for national greenhouse gas inventories. Waste 5, Intergovernmental Panel on Climate Change, 2006.
15.Kalyani, K.A., K.K. Pandey, Waste to energy status in India: a short review, Renew. Sustain. Energy Rev, vol.31, 2014, pp.113-120.
16.Kaplan, P.O., S.R. Ranjithan, M.A. Barlaz, Use of life-cycle analysis to support solid waste management planning for Delaware, Enivron. Sci. Technol, vol.43, 2009, pp.1264-1270.
17.Karavezyris, V., K.P. Timpe, R. Marzi, Application of system dynamics and fuzzy logic to forecasting of municipal solid waste, Math. Comput. Simul, vol.60, 2002, pp.149-158.
18.Kathirvale, S., M.N.M. Yunus, K. Sopian, A.H. Samsyddubm, Energy potential from municipal solid waste in Malaysia, Renewable Energy, vol.29, 2003, pp.559-567.
19.Kollikkathara, N., Feng, H., Yu, D., Asystem dynamic modeling approach for evaluating municipalsolid waste generation, landfill capacity and related cost management issues. Waste Manage. vol.30, 2010, pp.2194-2203.
20.Kyung, D., M. Kim, J. Chang, W. Lee, Estimation of greenhouse gas emissions from a hybrid wastewater treatment plant, J. Clean. Prod, vol.95, 2015, pp.117-123.
21.Leckner, B., Process aspects in combustion and gasification Waste-to-Energy (WtE), Waste Manage, vol.37, 2015, pp.13-25.
22.Masuda, S., S. Suzuki, I. Sano, Y.Y. Li, O. Nishsimura, The seasonal variation of emission of greenhouse gases from a ful-scale sewage treatment plant, Chemosphere, vol.140, 2015, pp.167-173.
23.Manfredi, S., D. Tonini, T.H. Christensen, H. Scharff, Landfilling of waste: accounting of greenhouse gases and global warming contributions, Waste Manage. Res, vol.27, 2009, pp.825-836.
24.Mohareb, A.K., M.A. Warith, R. Diaz, Modelling greenhouse gas emissions for municipal solid waste management strategies in Ottawa, Ontario, Canada, Resour. Conserv. Recycl, vol.52, 2008, pp.1241-1251.
25.Monni, S., From landfilling to waste incineration: implications in GHG emissions of different actors, Inter. J. Greenhouse Gas Control, vol.8, 2012, pp.82-89.
26.OECD, OECD Environmental Data Compendium 2002, OECD, France, 2002.
27.OECD, Statistics, data, and indicators—total population for OECD countries, OECD, France, 2004.
28.Olofsson, M., J. Sundberg, J. Sahlin, Evaluating waste incineration as treatment and energy recovery method from an environmental point of view, 13th Annual North American Waste-to-Energy Conference, Florida, 2005.
29.Pham, T.P.T., R. Kaushik, G.K. Parshetti, R. Mahmood, Food waste-to-energy conversion technologies: Current status and future directions, Waste Manage, vol.38, 2015, pp.399-408.
30.Riber, C., G.S. Bhander, T.H. Christensen, Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE), Waste Manage. Res, vol.26, 2008, pp.96-103.
31.Sukholthaman, P., & Sharp, A, A system dynamics model to evaluate effects of source separation of municipal solid waste management: A case of Bangkok, Thailand. Waste Management, vol.52, 2016, pp.50-61.
32.Tan, S.T., H. Hashim, J.S. Lim, W.S. Ho, C.T. Lee, J. Yan, Energy and emissions benefits of renewable energy derived from municipal solid waste: Analysis of a low carbon scenario in Malaysia, Appl. Energy, vol.136, 2014, pp.797-804.
33.Thomas, C.D., A. Cameron, R.E. Green, Extinction risk from climate change, Nature, vol.427, 2004, pp.145-148.
34.Tsai, W.T., Y.H. Chou, An overview of renewable energy utilization from municipal solid waste (MSW) incineration in Taiwan, Renew Sust. Energy Rev, vol.10, 2006, pp.491-502.
35.Wang, H., C. Wang, Municipal solid waste management in Beijing: characteristics and challenges. Waste Manage. Res, vol.31, 2013, pp.67-72.
36.Woon, K.S., I.M.C. Lo, Greenhouse gas accounting of the proposed landfill extension and advanced incineration facility for municipal solid waste management in Hong Kong, Sci. Total Environ, vol.458-460, 2013, pp.499-507.
37.Yang, N., H. Zhang, M. Chen, L.M. Shao, P.J. He, Greenhouse gas emissions from MSW incineration in China: impacts of waste characteristics and energy recovery, Waste Manage, vol.32, 2012, pp.2552-2560.
38.Yoshida, H., J.J. Gable, J.K. Park, Evaluation of organic waste diversion alternatives for greenhouse gas reduction, Resour. Conserv. Recycle. vol.60, 2012, pp.1-9.
39.天外天焚化廠,廢棄物採樣分析,天外天焚化廠,基隆,2015。
40.行政院環境保護署,101年度資源回收再利用年報,行政院環境保護署,臺北,2014。
41.行政院環境保護署,102年度資源回收再利用年報,行政院環境保護署,臺北,2015。
42.行政院環境保護署,環境政策與開發計畫成本效益分析作業參考手冊,臺北,2012。
43.行政院環境保護署,105年度環保統計年報,臺北,2016。
44.李政弘,「歐聯國家因應溫室氣體減量之稅制探討」,產業溫室氣體減量報導季刊,第十二期,2001。
45.沙拉,飼糧之蛋白質及限制飼養管理會影響豬隻的代償性成長,飼料營養雜誌,第四期,2007,第73-77頁。46.宋爾軒,廚餘發電的原理及實際案例,高瞻自然科學教學資源平臺,2016。
47.林浩業,氣候變遷之災損價值及溫室氣體減量效益評估,碩士論文,國立臺北科技大學,臺北,2012。48.林軒嘉,資源回收減量之環境及健康效益評估,碩士論文,國立臺北科技大學,臺北,2014。49.林慧貞,鼓勵小型養豬場沼氣發電,農傳媒,2017。
50.林慧貞,循環經濟-豬糞變綠電,農傳媒,2017。
51.周裕豐、朱雲鵬、葉欣誠、陳嘉尚,「臺灣廢棄物處理之動態模型分析」,國科會永續臺灣的願景與策略研究—永續臺灣2011計畫,2011。
52.陶在樸,系統動態學入門:直擊「五項修煉」,打開「世界模型」大門,五南書局,2016。
53.陳文卿,推動能源回收型豬糞尿處理系統提升綠能養豬,財團法人環境與發展基金會,2016。
54.陳鴻烈、廖英洲、許振峯、周孟融,以IPCC方法推估不同廚餘處理方式之溫室氣體排放,水土保持學報,第二十八卷,第一期,2013,第457–464頁。55.許哲豪,應用系統動態模式STELLA模擬臺灣溫室氣體及空氣污染物整合減量效益,碩士論文,國立臺北科技大學,臺北,2010。56.開東南亞第一槍!新加坡宣布開徵碳稅,低碳生活部落格,2017。
57.游苓楷,以氣候相關天災之經濟損失及生命價值評估臺灣溫室氣體減量效益,碩士論文,國立臺北科技大學,臺北,2011。58.劉國忠,主要國家的能源稅、碳稅(二)—日本,能源資訊平台,2015。
59.劉敏信、劉俊佑、謝金村、吳冠中,「都市垃圾焚化廠溫室氣體推估方法探討」,工業污染防治,第三期,2012。60.鄭幸雄,「中高溫厭氧微生物活性評估」,生質能源技術研討會,臺北,2015。
61.詹麗梅、陳鵬旭、廖朝軒、羅建成,「基隆地區供水系統模擬模型建立與供水策略分析」,第十三屆水利工程研討會,國立雲林科技大學,2002。
62.薛弘生,「對環境付費的時代—簡述碳稅」,經濟部能源局能源報導4月期刊,2003。63.蕭代基、鄭蕙燕、吳珮瑛、錢玉蘭、溫麗琪,環境保護之成本效益分析─理論、方法與應用,俊傑書局股份有限公司,2002。
64.謝長宏,系統動態學,中興管理顧問公司,1980。
65.蘇上銘,建立戴奧辛流佈之系統動態學模式及其與空氣汙染物之整合減量效益,碩士論文,國立臺北科技大學,臺北,2013。66.蘇忠楨,「綠能養豬發展新契機」,現代養豬4月期刊,2011。67.全國資源回收再利用宣導網,網址:http://waste1.epa.gov.tw/ier_web/,2017。
68.基隆市政府民政處人口統計,網址:http://civil.klcg.gov.tw/tw/Default/Index,2017。
69.經濟部能源局,網址:http://www.moeaboe.gov.tw/copyright.asp,2016。
70.國家溫室氣體減量法法規資訊網,網址:http://ghgrule.epa.gov.tw/,2017。