|
[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. NIPS, 2014. [2] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator. arXiv:1411.4555, 2014. [3] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. arXiv:1409.0473, 2014. [4] K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase representations using RNN encoder-decoder for statistical machine translation. EMNLP, 2014. [5] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer. Scheduled sampling for sequence prediction with recurrent neural networks. NIPS, 2015. [6] A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descriptions. arXiv:1412.2306, 2014. [7] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, and Y. Bengio. Show, attend and tell: Neural Image Caption Generation with Visual Attention. ICML, 2015. [8] T. Tieleman and G. Hinton. Lecture 6.5—Rmsprop: Divide the gradient by a running average of its recent magnitude. Coursera: Neural networks for machine learning, 2012. [9] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv:1412.6980, 2014. [10] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning 8(3-4):229–256, 1992. [11] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adversarial networks. CVPR, 2017. [12] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. ICLR, 2016. [13] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv:1703.10593, 2017. [14] J. Li, W. Monroe, T. Shi, S. Jean, A. Ritter, and D. Jurafsky. Adversarial learning for neural dialogue generation. arXiv:1701.06547, 2017. [15] L. Yu, W. Zhang, J. Wang, Y. Yu. SeqGAN: Sequence generative adversarial nets with policy gradient. AAAI, 2017. [16] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. ICML, 2017. [17] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. Improved training of Wasserstein GANs. arXiv:1704.00028, 2017. [18] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee. Generative adversarial text to image synthesis. arXiv:1605.05396, 2016. [19] M. Arjovsky and L. Bottou. Towards principled methods for training generative adversarial networks. ICLR, 2017. [20] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with Gumbel-Softmax. ICLR, 2016. [21] C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: a continuous relaxation of discrete random variables. ICLR, 2016. [22] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and C. L. Zitnick. Microsoft coco: Common objects in context. arXiv:1405.0312, 2014. [23] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning, 160-164, 2016. [24] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet large scale visual recognition challenge. arXiv:1409.0575, 2014. [25] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 1997. [26] M. Ranzato, S. Chopra, M. Auli, W. Zaremba. Sequence level training with recurrent neural networks. ICLR, 2016. [27] https://github.com/tylin/coco-caption [28] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. CVPR, 2015. [29] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. JMLR, 15:1929–1958, 2014. [30] C. Villani. Optimal Transport: Old and new. Springer, 2009. [31] T. Yao, Y. Pan, Y. Li, Z. Qiu, and T. Mei. Boosting image captioning with attributes. arXiv:1611.01646, 2016.
|