|
Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE transactions on neural networks, 5(2), 157-166. Chen, H.-H., & Lee, J.-C. (1996). Identification and classification of proper nouns in Chinese texts. Paper presented at the Proceedings of the 16th conference on Computational linguistics-Volume 1. Chen, X., Qiu, X., Zhu, C., Liu, P., & Huang, X. (2015). Long Short-Term Memory Neural Networks for Chinese Word Segmentation. Paper presented at the EMNLP. Chieu, H. L., & Ng, H. T. (2002). Named entity recognition: a maximum entropy approach using global information. Paper presented at the Proceedings of the 19th international conference on Computational linguistics-Volume 1. Chiu, J. P., & Nichols, E. (2015). Named entity recognition with bidirectional LSTM-CNNs. arXiv preprint arXiv:1511.08308. Goh, C.-L., Asahara, M., & Matsumoto, Y. (2005). Chinese Word Segmentation by Classification of Characters. International Journal of Computational Linguistics & Chinese Language Processing, Volume 10, Number 3, September 2005: Special Issue on Selected Papers from ROCLING XVI, 10(3), 381-396. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. Junyi, S. (2013, 2016). jieba. Retrieved from https://github.com/fxsjy/jieba Lafferty, J., McCallum, A., & Pereira, F. C. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. Lin, Q.-X., Chang, C.-H., & Chen, C.-L. (2010). 結合長詞優先與序列標記之中文斷詞研究 (A Simple and Effective Closed Test for Chinese Word Segmentation Based on Sequence Labeling)[In Chinese]. International Journal of Computational Linguistics & Chinese Language Processing, Volume 15, Number 3-4, September/December 2010, 15(3-4). Ma, X., & Hovy, E. (2016). End-to-end sequence labeling via bi-directional lstm-cnns-crf. arXiv preprint arXiv:1603.01354. Peng, F., Feng, F., & McCallum, A. (2004). Chinese segmentation and new word detection using conditional random fields. Paper presented at the Proceedings of the 20th international conference on Computational Linguistics. Peng, N., & Dredze, M. (2016). Improving named entity recognition for chinese social media with word segmentation representation learning. arXiv preprint arXiv:1603.00786. Raschka, S. (2015). Python machine learning: Packt Publishing Ltd. Rehurek, R. (2009, 2018/02/03). Topic Modelling For Humans. Retrieved from https://radimrehurek.com/gensim Sullivan, D. (2001). Document warehousing and text mining: techniques for improving business operations, marketing, and sales: John Wiley & Sons, Inc. Sun, J. (2012). ‘Jieba’Chinese word segmentation tool. Teahan, W. J., Wen, Y., McNab, R., & Witten, I. H. (2000). A compression-based algorithm for Chinese word segmentation. Computational Linguistics, 26(3), 375-393. Xu, J., & Sun, X. (2016). Dependency-based gated recursive neural network for chinese word segmentation. Paper presented at the Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). 林千翔. (2004). 基於特製隱藏式馬可夫模型之中文斷詞研究; Chinese Word Segmentation using Specialized HMM. 林大貴. (2017). TensorFlow+Keras深度學習人工智慧實務應用: 博碩文化. 陳稼興, 謝佳倫, & 許芳誠. (2000). 以遺傳演算法為基礎的中文斷詞研究. 資訊管理研究, 2(2), 27-44. 陳譽晏. (2015). 運用 R Shiny 建立文字探勘平台之語意分析及輿情分析. Journal of Data Analysis, 10(6), 51-78.
|