跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/06 11:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張光瑜
研究生(外文):Chang, Kuang-Yu
論文名稱:硫鋁酸鹽水泥混合一型水泥之水泥質裂縫注入劑之研究
論文名稱(外文):A study on the properties of cement-based crack injection materials using sulphoaluminate cement and type I cement
指導教授:葉為忠
口試委員:紀茂傑鄭安
口試日期:2018-07-06
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:52
中文關鍵詞:硫鋁酸鹽水泥裂縫注入劑劈裂強度
外文關鍵詞:calcium sufoaluminate cementcrack injection materiasplitting tensile strength
相關次數:
  • 被引用被引用:4
  • 點閱點閱:372
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以不同比例的一型水泥與硫鋁酸鹽水泥混合,研究製作裂縫注入劑的可行性。目標在於找出能夠滿足歐盟EN1504-5規範中規定,通過時間能夠在8分鐘以內,並且28天劈裂強度超過3MPa之配比。實驗方法包括了通過時間試驗、劈裂強度試驗、漿體黏度試驗、砂漿抗壓試驗、砂漿長度變化率試驗。
由研究成果發現,水膠比0.475,一型水泥佔80%,硫鋁酸鹽水泥佔20%之配比可以達到目標。該配比所得到的劈裂強度,甚至比單純使用一型水泥之漿體來得高。由不同段落的劈裂強度值,可以發現混合水泥可能有淅離現象發生。由黏度試驗發現,當硫鋁酸鹽水泥量增加時,漿體的初始黏度下降,這與通過性試驗結果相左。發生相左的原因,可能是因為混合水泥配比中並沒有對硫鋁酸鹽水泥有效的分散劑,所以當硫鋁酸鹽水泥量增加,會發生團簇、絮凝等現象,進而造成阻塞。由砂漿抗壓試驗發現,當養護條件可以保證水分充足時,單純使用一型水泥的砂漿強度最好。而一型水泥用量接近一半時,強度最低。由砂漿長度變化率試驗發現,硫鋁酸鹽水泥用量增加,混合水泥砂漿的收縮量就越低。
Different proportions of type I cement and calcium sufoaluminate cement in blended cement system for manufacturing the cement-based crack injection material were investigated. The goal of this study is to find appropriate mixtures such that the passing time requirement (maximum 8 minutes) in EN-1504 and the 28-d splitting tensile strength exceeding 3 MPa can be achieved. The experiments conducted include the injection capability test (passing time), the splitting tensile strength test, the viscosity test, the compressive strength test of mortar cubes and the length change percentage test. Results show that the mixture with w/c=0.475, the weight of type cement in blended cement equal to 80% and the weight of sulphoaluminate cement equal to 20% can match the goal. The splitting tensile strength of this mixture even exceed that using 100% type I cement. From the splitting strength values for different locations, the blended cement might have segregation phenomenon. From the results of viscosity test, it is found that when the content of sulphoaluminate cement increases, the initial viscosity of grout decreases, which is inconsistent with the results for injection capability test. The reason for inconsistency comes from that no appropriate dispersant for sulphoaluminate cement exists such that the balling effect or flocculation might happen and consequently results in sag especially when the content of sulphoaluminate cement increases. From the compressive strength test, it is found when the curing environment can guarantee enough water then compressive strength for specimens using 100% type I cement is highest. When the amount of type I cement near one half, the compressive strength reaches minimum value. From the length change test, it is found that when the content of sulphoaluminate cement is higher, the contraction of mortar is less significant.
中文摘要 I
ABSTRACT II
目錄 III
圖目錄 V
表目錄 VI
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
1-3 研究方法與流程 3
第二章 文獻回顧 4
2-1 前言 4
2-2 材料 4
2-2-1 水泥 4
2-2-2 硫鋁酸鹽水泥 5
2-3 鋼筋混凝土劣化原因 5
2-3-1 混凝土劣化原因[1] 5
2-3-2 裂縫成因 8
2-3-3 裂縫種類 8
2-3-4 容許裂縫寬度 9
2-4 鋼筋混凝土結構物的修補 10
2-4-1 修補材料 10
2-4-2 修補材料性質 11
2-5 裂縫修補 12
2-6 有關裂縫修補的研究 17
第三章 試驗計畫 18
3-1 前言 18
3-2 試驗變數 18
3-3 試驗材料 18
3-4 配比編號與設計 22
3-4-1 配比編號 22
3-4-2 注入漿體配比設計 23
3-5 試驗方法 24
3-5-1 注入性試驗漿體拌合流程 24
3-5-2 注入性試驗 24
3-5-3 劈裂試驗 28
3-5-4 黏度試驗 30
3-5-5 砂漿抗壓試驗 31
3-5-6 砂漿長度變化試驗 31
第四章 試驗結果與分析 33
4-1 先期試驗結果 33
4-2 注入性試驗(水膠比0.475) 34
4-3 劈裂強度試驗(水膠比0.475) 36
4-4 黏度試驗(水膠比0.475) 39
4-5 砂漿抗壓強度試驗(水膠比0.475) 41
4-6 砂漿長度變化率試驗(水膠比0.475) 43
4-7 混合水泥漿體產生淅離的探討 45
第五章 結論與建議 47
5-1結論 47
5-2建議 47
參考文獻 48
附錄 51
附錄二 再粉磨硫鋁酸鹽水泥之細度檢驗報告 52
1. 廖國裕,“水泥之水化反應”,國立交通大學,2003 https://ir.nctu.edu.tw/bitstream/11536/80791/8/680608.pdf。
2. http://www.twce.org.tw/info/%E6%8A%80%E5%B8%AB%E5%A0%B1/197-2-2.htm。
3. 《土木材料》,顏聰 編著,2006年2月出版。
4. Z. He, H. Yang, M. Liu, “Hydration mechanism of sulphoaluminate cement”, Journal of Wuhan University of Technology-Mater. Sci. Ed., Vol.29, No.1, pp.70-75, 2014.
5. J. Bizzozero,” Hydration and dimensional stability of calcium aluminate cement based systems”,A Doctoral Thesis No. 6336 (2014), École polytechnique Fédérale de Lausanne, Switzerland, 2014.
6. D. Gastaldi, F. Canonico, L. Capelli, M. Bianchi, M. L. Pace, A. Telesca, G. L. Valenti, “Hydraulic behaviour of calcium sulfoaluminate cement alone and in mixture with Portland cement”. https://www.researchgate.net/publication/292267889. 01 February 2016.
7. 社團法人臺灣混凝土學會 http://www.concrete.org.tw/40572360743328731890260092145325033-alkali-aggregate-reaction.html。
8. 鄭讚慶,“防蝕塗層效能評估及鋼筋腐蝕對握裹強度影響之研究”國立臺灣海洋大學河海工程學系,碩士論文,2001。
9. 胡旭宏,“矽烷類活性撥水劑在混凝土修補上運用之研究” ,國立台灣海洋大學結構組研究所,碩士論文,2013。
10. 李有豐、林安彥,”橋梁檢測評估與補強”,拳華科技圖書股份有限公司,2000。
11. 劉冠廷,“環氧樹脂及壓克力樹脂漿體用於修補裂縫適用性之研究”,國立台灣海洋大學結構組研究所,碩士論文,2012。
12. 陳振川、張光甫,「橋樑混凝土結構施工品質問題檢測診斷與處理」,台灣營建研究院,pp. 13-46,1999。
13. 李文哲,“水泥基質裂縫修補注入劑之研究”,國立臺灣海洋大學河海工程學系,碩士論文,2014。
14. 邱為則,“卜作嵐材料改性水泥基質混凝土裂縫注入劑之研究”,國立臺灣海洋大學河海工程學系,碩士論文,2016。
15. S. W. Tsai and H. T. Hahn, “Introduction to Composite Materials”, Technomic Publishing Co., Inc. Westport, 1980。
16. 王詵凱,“修補砂漿基本性質之研究”,國立台灣海洋大學結構組研究所,碩士論文,2012。
17. “混凝土工程施工規範與解說",中國土木水利工程學會,混凝土工程委員會,1999。
18. D. Van Gemert, L. Czarnecki, and R. Bareš, “Basis for selection of PC and PCC for concrete repair”, Internation Journal of Cement Composites and Lightweight Concrete Vol. 110 (2), pp. 121–123 ,1988.
19. 劉楨業、梁智信、翁榮訓、張奇偉、鄭振定、鄭華,"混凝土結構物修補技術指引",財團法人中興工程顧問社,2009年8月。
20. EN1504-5:2004, Products and systems for the protection and repair of concrete structures-Definitions, requirements, quality control and evaluation of conformity- Part 5: Concrete injection. British Standard Institution, 2004.
21. A. McLeich (editor),”Underwater concreting and repair”, Elsevier Ltd., 1994.
22. K. V. Tittelboom, N. D. Belie, W. D. Muynck and W. Vestraete. Use of bacteria to repair cracks in concrete. Cement and Concrete Research, vol. 40: pp. 157-166, 2010.
23. H. M. Jonkers and E. Schlangen. Crack repair by concrete- immobilized bacteria. Proceedings of the first international conference on self healing materials, pp. 18-20 April 2007, Noordwijk aan Zee, the Netherlands.
24. C. A. Issa, P. Debs. Experimental study of epoxy repairing of cracks in concrete. Construction and building materials, vol. 21: pp. 157-163, 2007.
25. M. Ekenel, J. J. Myers. Durability performance of RC beams strengthened with epoxy injection and CFRP fabrics. Construction and building materials, vol. 21:pp. 1182-1190, 2007.
26. M. ElGawady, P. Lestuzzi, M. Badoux. A review of concentional seismic retrofitting techniques for URM, 13th international brick and block masonry conference, Amsterdam, July 4-7, 2004.
27. 呂軒志、蕭孙翔、王泰典、鄭大偉、翁祖炘。無機聚合物在混凝土裂縫修補應用之探討。Taiwan rock engineering symposium, Oct 30-31, Taipei, Taiwan, 2008.
28. G. Tsiatas, J. Robinson. Durability evaluation of concrete crack repair systems. Transportation research record 1795, Paper N. 02-3594, pp.82-87, 2002.
29. 干裕成、李明君、金文森。混凝土裂縫修補材料之研發與膠結性能研究。行政院國家科學委員會專題研究計畫成果報告,2002年。
30. K. Minoru, K. Toshiro, U. Yuichi, R. Keitetsu. Evaluation of bond properties in concrete repair materials. J Mater. Civ. Eng., 13, special section: fracture mechanics in concrete repair/strengthening, pp. 98-105, 2001.
31. K. H. Khyat, G. Ballivy, M. Gaudreault. High-performance cement grout for underwater crack. Canadian journal of civil engineering, vol. 24(3): pp. 405-418, 1997.
32. S. Perret, K. Khayat, E. Gagnon, J. Rhazi. Repair of 130-year old masonry bridge using high-performance cement grout. J. Bridge Eng., vol. 7(1): pp. 31-38, 2002.
33. K. H. Khayat, A. Yahia. Effect of welan gum-high range water reducer combinations on rheology of cement grout. ACI materials journal, vol. 94(5): pp. 365-372, 1997.
34. S. Perret, D. Palardy, G. Ballivy. Rheological behavior and setting time of microfine cement-based grouts. ACI materials journal, vol. 97(4): pp. 472-478, 2000.
35. W. Yeih, H. –M. Hsu, J. J. Chang, C. –C. Hung and R. Huang. A study on repairing internal defects inside concrete using the electrochemical deposition method. Journal of Marine Science and Engineering, vol. 18(3): pp.424-429, 2010.
36. J. J. Chang, W. Yeih, H. M. Hsu and N. M. Huang. Performance evaluation of using electrochemical deposition as a repair method for reinforced concrete beams. Structural longevity,vol.1(2): pp. 75-93, 2009.
37. EN 1771:2004, Products and systems for the protection and repair of concrete structures- test methods- determination of injectability and splitting test. European committee for standarization, 2004.
38. ASTM C1749-17a, Standard guide for measurement of the rheological properties of hydraulic cementitious paste using a rotational rheometer. ASTM International, West Conshohocken, PA, 2017.
39. ASTM C109 / C109M-16a, Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens), ASTM International, West Conshohocken, PA, 2016.
40. ASTM C157 / C157M-17, Standard test method for length change of hardened hydraulic-cement mortar and concrete, ASTM International, West Conshohocken, PA, 2017.
41. 陳建奎。混凝土外加劑原理與應用,第二版,中國計畫出版社,2004。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top