跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.103) 您好!臺灣時間:2026/01/16 09:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:崔源生
研究生(外文):Yuang-Seng Tsuei
論文名稱:硬腦膜動靜脈瘻管之基因多型性研究
論文名稱(外文):Gene Polymorphism in Dural Arteriovenous Fistula
指導教授:楊順發
指導教授(外文):Sun-Fa Yang
學位類別:博士
校院名稱:中山醫學大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:51
中文關鍵詞:硬腦膜瘻基質金屬蛋白酶單核苷酸多型性靜脈竇血栓靜脈高壓
外文關鍵詞:dural arteriovenous fistulamatrix metalloproteinasesingle nucleotide polymorphismsinus thrombosisvenous hypertension
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
硬腦膜動靜脈瘻管(Dural Arteiovenous Fistula, DAVF)乃一較少見但重要之成人腦血管疾病,其病理病因學與分子生物學的研究相對付之闕如,本研究計畫主要分析相關生成刺激因子的基因多型性在硬腦膜動靜脈瘻管生成中或表現上所扮演的角色。本實驗收集72名罹患硬腦膜動靜脈瘻管受試者血液檢體,利用即時聚合酶連鎖反應(real-time Polymerase chain reaction, real-time PCR)方法,進行7種血管生成相關因子的單核苷酸多型性 (single-nucleotide polymorphism, SNP) 分析,包括有MMP-2 -1306 (rs243865); MMP-9 (rs17576);MMP-9 (rs9509); TIMP-1 (rs4898); TIMP-2 (rs2277698); VEGFA (rs2010963);VEGFA (rs3025039)。受試者的臨床與影像資料,則根據瘻管位置,瘻管病灶數,顱內腦靜脈反流分級(Borden I與Borden II / III)和靜脈竇血栓形成有無,進行四類次分組統計。本研究發現硬腦膜動靜脈瘻管受試者中,基質金屬蛋白酶(Matrix metalloproteinase, MMP)中的MMP-2-1306C/T (rs243865)多型性等位基因的個體更容易有併發靜脈竇血栓之情形,優勢比[Odds ratio, OD],6.2; 95%信賴區間[Confidence interval, CI],1.7至22.9;p值為0.006。也同時發現到硬腦膜動靜脈瘻管受試者中組織基質金屬蛋白酶抑制物-2,Tissue inhibitor of metalloproteinase, TIMP-2 (rs2277698)多型性等位基因的個體可能易有併發靜脈竇血栓之情形,優勢比[OD],3.0;95%信賴區間[CI],1.1至8.2;p值為0.026。本研究發現硬腦膜動靜脈瘻管受試者中,基質金屬蛋白酶-2, MMP-2-1306C/T (rs243865)多型性等位基因的個體,與容易有併發靜脈竇血栓有關,可用於做為臨床預期判斷,而MMP-9、TIMP-1、 TIMP-2與VEGFA等相關之單核苷酸多型性,則與硬腦膜動靜脈瘻管之表現無關。
Dural arteriovenous fistula (DAVF) is a rare but important cerebrovascular disorder in adults. Little is known about the molecular genetic pathogenesis underlying the development of DAVF. The present study was conducted to investigate the associations of gene polymorphisms and DAVF. Using real-time polymerase chain reaction (real-time PCR) genotyping, 7 single-nucleotide polymorphisms (SNPs) of angiogenesis-related genes, including MMP-2 -1306 (rs243865); MMP-9 (rs17576); MMP-9 (rs9509); TIMP-1 (rs4898); TIMP-2 (rs2277698); VEGFA (rs2010963); VEGFA (rs3025039) were analyzed in 72 DAVF patients. Pertinent clinical and imaging data were sub-grouped based on location (cavernous sinus versus non-cavernous sinus), lesions (single versus multiple), cerebral venous reflux (CVR) grading (Borden I versus Borden II/III), and sinus thrombosis (with versus without). We found that individuals carrying the polymorphic allele of matrix metalloproteinase (MMP)-2-1306 C/T (rs243865) were more susceptible to DAVF patients with sinus thrombosis (odds ratio [OR], 6.2; 95% confidence interval [CI], 1.7 to 22.9; p value=0.006). There was a weak difference in associations of TIMP-2 (rs2277698) gene polymorphism and DAVF patients sub-grouped by CVR grading (OR, 3.0; 95% CI, 1.1 to 8.2, p value=0.026). These results indicate that MMP-2-1306 C/T, but not MMP-9, TIMP-1, TIMP-2, and VEGFA SNPs variants, is a risk factor for the development of sinus thrombosis in DAVF.
目錄
縮寫檢索表............................................IV
摘要..................................................V
Abstract ...........................................VII

第一章 緒論 ......................................................1
一、硬腦膜動靜脈瘻管(Dural Arteriovenous Fistula).......1
1.1. 硬腦膜動靜脈瘻管之病理組織學定義....................1
1.2. 硬腦膜動靜脈瘻管之流行病學.........................2
1.3. 硬腦膜動靜脈瘻管生成之致病機轉......................2
1.4. 硬腦膜動靜脈瘻管之臨床臨床表徵......................2
1.5. 硬腦膜動靜脈瘻管之診斷.............................3
1.6. 硬腦膜動靜脈瘻管之分類.............................4
1.7. 硬腦膜動靜脈瘻管之治療.............................5
二、硬腦膜動靜脈瘻管分子生物學研究之文獻回顧..............6
2.1. 以硬腦膜動靜脈瘻管為關鍵字搜尋......................6
2.2. 以硬腦動靜脈畸型為關鍵字搜尋........................6
2.3. 基因多型性的研究選擇...............................7
三、血管新生調節因子....................................8
3.1. 基質金屬蛋白酶-2, MMP-2............................8
3.2. 基質金屬蛋白酶-9, MMP-9............................9
3.3. 組織基質金屬蛋白酶抑制物, TIMP......................9
3.4. 血管內皮生長因子, VEGF-A..........................10

第二章 實驗動機........................................11

第二章 實驗方法 .......................................12
一、實驗材料與方法......................................12
1.1. 實驗檢體及資料來源.................................12
1.2. 檢體採集與分離.....................................12
二、基因多型性的選擇....................................12
三、DNA之萃取..........................................13
四、即時定量聚合酶連鎖反應..............................14
五、統計分析...........................................15

第四章 結果 ...........................................16
一、臨床與影像學資料....................................16
二、硬腦膜動靜脈瘻管患者的基因多型性分布頻率..............16
三、基因多型性分布與靜脈竇血栓之關聯性...................17
四、基因多型性分布與顱內靜脈反流分類之關聯性..............18
五、基因多型性分布與瘻管發生部位之關聯性..................19
六、基因多型性分布與瘻管病灶數之關性.....................19

第五章 討論 ...........................................20

第六章 結論與建議.......................................25

參考文獻 ..............................................26
圖表與結果說明 ........................................36
表一 受試者之基本特性與次分類分布表......................37
表二 硬腦膜動靜脈瘻管受試者的基因多型性分布頻率...........38
表三 基因多型性分布與靜脈竇血栓之關聯性之關聯性...........39
表四 基因多型性分布與顱內反流分類之關聯性................41
表五 基因多型性分布與瘻管發生部位之關聯性................43
表六 基因多型性分布與瘻管病灶數之關聯性之關聯性...........45
附錄 .................................................47
已發表論文............................................51
1.Lasjaunias P., ter Brugge K.G., Berenstein A. Dural arteriovenous shunts In: 2rd ed. Surgical Neuro-angiography. Germany: Springer-Verlag 2004;566–607.
2.van Dijk JM, TerBrugge KG, Willinsky RA, Wallace MC. Multiplicity of dural arteriovenous fistulas. J Neurosurg 2002;96:76-8.
3.Lasjaunias P, Chiu M, TerBrugge K, Tolia A, Hurth M, Bernstein M. Neurological manifestations of intracranial dural arteriovenous malformations. J Neurosurg 1986;64:724–30.
4.Chaichana KL, Coon AL, Tamargo RJ, Huang J. Dural arteriovenous fistulas: epidemiology and clinical presentation. Neurosurg Clin N Am 2012;23:7–13.
5.AK Gupta, AL Periakaruppan Intracranial dural arteriovenous fistulas: A Review Indian J Radiol Imaging 2009;19: 43–8.
6.Awad IA, Little JR, Akarawi WP, Ahl J. Intracranial dural arteriovenous malformations: factors predisposing to an aggressive neurological course. J Neurosurg 1990;72:839-50.
7.Miller TR, Gandhi D. Intracranial Dural Arteriovenous Fistulae: Clinical Presentation and Management Strategies. Stroke 2015;46:2017–25.
8.Gandhi D, Chen J, Pearl M, Huang J, Gemmete JJ, Kathuria S. Intracranial dural arteriovenous fistulas: classification, imaging findings, and treatment. AJNR Am J Neuroradiol 2012;33:1007-13.
9.Borden JA, Wu JK, Shucart WA. A proposed classification for spinal and cranial dural arteriovenous fistulous malformations and implications for treatment. J Neurosurg 1995;82:166–79.
10.Cognard C, Gobin YP, Pierot L, Bailly AL, Houdart E, Casasco A, Chiras J, Merland JJ. Cerebral dural arteriovenous fistulas: clinical and angiographic correlation with a revised classification of venous drainage. Radiology 1995;194:671-80.
11.Wilcock DM, Morgan D, Gordon MN, Taylor TL, Ridnour LA, Wink DA, Colton CA. Activation of matrix metalloproteinases following anti-Aβ immunotherapy; implications for microhemorrhage occurrence.J Neuroinflammation. 2011;8:115.
12.Kraus JA, Stuper BK, Muller J, Nahser HC, Klockgether T, Berlit P, Harbrecht U. Molecular analysis of thrombophilic risk factors in patients with dural arteriovenous fistulas. J Neurol 2002;249:680-2.
13.Pawlikowska L, Tran MN, Achrol AS, McCulloch CE, Lind DL, Hashimoto T, Zaroff J, Lawton MT, Marchuk DA, Kwok PY, Young WL. Polymorphisms in genes involved in inflammatory and angiogenic pathways and the risk of hemorrhagic presentation of brain arteriovenous malformations. Stroke 2004;35:2294-300.
14.Sturiale CL, Puca A, Sebastiani P, Gatto I, Albanese A, Di Rocco C, Maira G, Pola R. Single nucleotide polymorphisms associated with sporadic brain arteriovenous malformations: where do we stand? Brain 2013;136:665-81.
15.Nagase H. Cell surface activation of progelatinase A (proMMP-2) and cell migration. Cell Res 1998;8:179-86.
16.Natarajan SK, Ghodke B, Kim LJ, Hallam DK, Britz GW, Sekhar LN. Multimodality treatment of intracranial dural arteriovenous fistulas in the Onyx era: a single center experience. World Neurosurg. 2010;73:365-79
17.Swetha R, Gayen C, Kumar D, Singh TD, Modi G, Singh SK. Biomolecular basis of matrix metallo proteinase-9 activity. Future Med Chem 2018;10:1093-112
18.Liu J, Khalil RA. Matrix Metalloproteinase Inhibitors as Investigational and Therapeutic Tools in Unrestrained Tissue Remodeling and Pathological Disorders. Prog Mol Biol Transl Sci 2017;148:355-420.
19.Vempati P, Popel AS, Mac Gabhann F. Extracellular regulation of VEGF: isoforms, proteolysis, and vascular patterning. Cytokine Growth Factor Rev 2014;25:1-19.
20.Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med 2010;363:166-76.
21.Hashimoto T, Wen G, Lawton MT, Boudreau NJ, Bollen AW, Yang GY, Barbaro NM, Higashida RT, Dowd CF, Halbach VV, Young WL; University of California, San Francisco BAVM Study Group. Abnormal expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in brain arteriovenous malformations. Stroke 2003;34:925-31.
22.Xu M, Xu H, Qin Z, Zhang J, Yang X, Xu F. Increased expression of angiogenic factors in cultured human brain arteriovenous malformation endothelial cells. Cell Biochem Biophys 2014;70:443-7.
23.Lu DY, Yeh WL, Huang SM, Tang CH, Lin HY, Chou SJ.Osteopontin increases heme oxygenase-1 expression and subsequently induces cell migration and invasion in glioma cells. Neuro Oncol 2012; 14:1367-78.
24.Huang SM, Cheung CW, Chang CS, Tang CH, Liu JF, Lin YH, Chen JH, Ko SH, Wong KL, Lu DY. Phloroglucinol derivative MCPP induces cell apoptosis in human colon cancer. J Cell Biochem 2011;112:643-52.
25.Tsai CF, Yeh WL, Huang SM, Tan TW, Lu DY. Wogonin induces reactive oxygen species production and cell apoptosis in human glioma cancer cells. Int J Mol Sci 2012;13:9877-92.
26.Wang SS, Li CH, Zhang XJ, Wang RM. Investigation of the mechanism of dural arteriovenous fistula formation induced by high intracranial venous pressure in a rabbit model. BMC Neurosci 2014;15:101.
27.Chen L, Mao Y, Zhou LF. Local chronic hypoperfusion secondary to sinus high pressure seems to be mainly responsible for the formation of intracranial dural arteriovenous fistula. Neurosurgery 2009;64:973-83.
28.Zhu Y, Lawton MT, Du R, Shwe Y, Chen Y, Shen F, Young WL, Yang GY. Expression of hypoxia-inducible factor-1 and vascular endothelial growth factor in response to venous hypertension. Neurosurgery 2006;59:687-96.
29.Shin Y, Nakase H, Nakamura M, Shimada K, Konishi N, Sakaki T. Expression of angiogenic growth factor in the rat DAVF model. Neurol Res 2007;29:727-33.
30.Tirakotai W, Bertalanffy H, Liu-Guan B, Farhoud A, Sure U. Immunohistochemical study in dural arteriovenous fistulas and possible role of local hypoxia for the de novo formation of dural arteriovenous fistulas. Clin Neurol Neurosurg 2005;107:455-60.
31.Uranishi R, Nakase H, Sakaki T. Expression of angiogenic growth factors in dural arteriovenous fistula. J Neurosurg. 1999;91:781-6.
32.Li Q, Zhang Q, Huang QH, Fang YB, Zhang ZL, Xu Y, Liu JM. A pivotal role of the vascular endothelial growth factor signaling pathway in the formation of venous hypertension-induced dural arteriovenous fistulas. Mol Med Rep 2014;9:1551-8.
33.Herman JM, Spetzler RF, Bederson JB, Kurbat JM, Zabramski JM. Genesis of a dural arteriovenous malformation in a rat model. J Neurosurg 1995;83:539-45.
34.Hacein-Bey L, Konstas AA, Pile-Spellman J. Natural history, current concepts, classification, factors impacting endovascular therapy, and pathophysiology of cerebral and spinal dural arteriovenous fistulas. Clin Neurol Neurosurg 2014;121:64-75.
35.Hamada Y, Goto K, Inoue T, Iwaki T, Matsuno H, Suzuki S, Matsushima T, Fukui M, Miyake E. Histopathological aspects of dural arteriovenous fistulas in the transverse-sigmoid sinus region in nine patients. Neurosurgery 1997;40:452-6.
36.Terada T, Higashida RT, Halbach VV, Dowd CF, Tsuura M, Komai N, Wilson CB, Hieshima GB. Development of acquired arteriovenous fistulas in rats due to venous hypertension. J Neurosurg 1994;80:884-9.
37.Tsai LK, Jeng JS, Liu HM, Wang HJ, Yip PK. Intracranial dural arteriovenous fistulas with or without cerebral sinus thrombosis: analysis of 69 patients. J Neurol Neurosurg Psychiatry 2004;75:1639-41.
38.Rehak J, Rehak M. Branch retinal vein occlusion: pathogenesis, visual prognosis, and treatment modalities. Curr Eye Res 2008;33:111-31.
39.Kraus JA, Stuper BK, Nahser HC, Klockgether T, Berlit P. Significantly increased prevalence of factor V Leiden in patients with dural arteriovenous fistulas. J Neurol 2000;247:521-3.
40.Kraus JA, Stuper BK, Muller J, Nahser HC, Klockgether T, Berlit P, Harbrecht U. Molecular analysis of thrombophilic risk factors in patients with dural arteriovenous fistulas. J Neurol 2002;249:680-2.
41.Ortak H, Demir S, Ates O, Söğüt E, Alim S, Benli I. Association of MMP2-1306C/T and TIMP2G-418C polymorphisms in retinal vein occlusion. Exp Eye Res 2013;113:151-5.
42.Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 2003;92:827-39.
43.Yan C, Boyd DD. Regulation of matrix metalloproteinase gene expression. J Cell Physiol 2007;211:19-26.
44.Fernandez-Patron C, Martinez-Cuesta MA, Salas E, Sawicki G, Wozniak M, Radomski MW, Davidge ST. Differential regulation of platelet aggregation by matrix metalloproteinases-9 and -2. Thromb Haemost 1999;82:1730-5.
45.Sawicki G, Salas E, Murat J, Miszta-Lane H, Radomski MW. Release of gelatinase A during platelet activation mediates aggregation. Nature 1997;386:616-9.
46.Martinez A, Salas E, Radomski A, Radomski MW. Matrix metalloproteinase-2 in platelet adhesion to fibrinogen: interactions with nitric oxide. Med Sci Monit 2001;7:646-51.
47.Falcinelli E, Guglielmini G, Torti M, Gresele P. Intraplatelet signaling mechanisms of the priming effect of matrix metalloproteinase-2 on platelet aggregation. J Thromb Haemost 2005;3:2526-35.
48.Florczak-Rzepka M, Grond-Ginsbach C, Montaner J, Steiner T. Matrix metalloproteinases in human spontaneous intracerebral hemorrhage: an update. Cerebrovasc Dis 2012;34:249-62.
49.Aksoy D, Ates O, Kurt S, Cevik B, Sumbul O. Analysis of MMP2-1306C/T and TIMP2G-418C polymorphisms with relapsing remitting multiple sclerosis. J Investig Med 2016;64:1143-7.
50.Chen YC, Ho WM, Lee YS, Chen HW, Chen CM. Polymorphisms in the Promoters of the MMP-2 and TIMP-2 Genes Are Associated with Spontaneous Deep Intracerebral Hemorrhage in the Taiwan Population. PLoS One 2015;10:e0142482.
51.Armstrong C, Abilleira S, Sitzer M, Markus HS, Bevan S. Polymorphisms in MMP family and TIMP genes and carotid artery intima-media thickness. Stroke 2007;38:2895-9.
52.Coven I, Ozer O, Ozen O, Sahin FI, Altinors N. Presence of matrix metalloproteinase-2 and tissue inhibitor matrix metalloproteinase-2 gene polymorphisms and immunohistochemical expressions in intracranial meningiomas. J Neurosurg 2014;121:1478-82.
53.Powell SK, Gregory J, Akbarian S, Brennand KJ. Application of CRISPR/Cas9 to the study of brain development and neuropsychiatric disease. Mol Cell Neurosci 2017;82:157-166
54.Zhang LY, Ren KW. Meta-analysis of MMP2 -1306T allele as a protective factor in digestive cancer. Arch Med Res 2011;42:239-43.
55.Srivastava P, Lone TA, Kapoor R, Mittal RD. Association of promoter polymorphisms in MMP2 and TIMP2 with prostate cancer susceptibility in North India. Arch Med Res 2012;43:117-24.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊