跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 07:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳栢兆
研究生(外文):Po-chao Wu
論文名稱:河口與近海環境懸浮顆粒物質之探討:顆粒性有機物之來源及懸浮顆粒之重量法測定
論文名稱(外文):Suspended Particulate Matter in the estuarine and coastal environments: origin of organic matter determined from isotopic composition and gravimetric determination of suspended solid
指導教授:劉康克劉康克引用關係
指導教授(外文):Kon-kee Liu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:水文與海洋科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:143
中文關鍵詞:顆粒性有機物懸浮顆粒濃度氮同位素組成淡水河碳氮比
外文關鍵詞:particulate organic matterconcentration of suspended solidnitrogen isotopic compositionthe Danshuei RiverC/N ratio
相關次數:
  • 被引用被引用:3
  • 點閱點閱:520
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
淡水河位於台灣北部,流域經過台北市與新北市,為台灣人口密度最高的地方。都市排放大量之廢水,對淡水河造成嚴重的污染,進而影響河中之懸浮顆粒物質等生地化過程。透過定性與定量分析顆粒物質,不僅可以了解淡水河口顆粒性有機物之來源以及生地化過程,也可以了解淡水河口懸浮顆粒物質之輸送過程。
過去之研究認為在淡水河口中之顆粒性有機物來源有汙水、土壤以及沉積物,然而本研究對前人2009年在重陽橋所測量之結果提出討論與推算。結果發現淡水河口中之汙水不是直接提供顆粒性有機物之來源,而是汙水所含營養鹽經由藻類吸收後,所產生之藻類以及其碎屑,才是主要的顆粒性有機物來源。本研究不僅找出藻類碎屑之特性,並且以此作為新的端成份重新考慮。經由推算後得到2009年2月之顆粒性有機物來源為藻類碎屑與沉積物各佔45.3%、51.3%,土壤佔3.5%。而2009年7月之顆粒性有機物主要來源為藻類碎屑,佔75.3%;沉積物為次要,佔17.3%,其餘則為土壤佔7.5%。
本研究也對河口與近岸海洋環境之懸浮顆粒濃度進行討論,結果顯示河口與海洋環境懸浮顆粒濃度會受到過濾之背景值影響(0.2 ~28 mg)。在這樣作用複雜的環境之下,進行少量體積過濾測量懸浮顆粒濃度時,就必須使用不同體積之樣水,進行重複過濾測定,再由迴歸分析,藉此修正背景值之影響,最後可以得到最可靠之懸浮顆粒濃度。換言之,進行一次之過濾測量結果是很不準確的。
未經背景值修正前,重量法測定結果與OBS資料兩者之相關性與顯著性皆不好(R2 = 0.151, p = 0.046);迴歸修正之後再進行比較,兩者關係提升(R2 = 0.568, p < 0.001 ),顯示迴歸修正之重要。然而OBS資料較重量法結果高出很多,顯示OBS原先之設定可能有問題。在河口或近岸海洋環境這樣複雜的環境下,OBS之校正就必須更加嚴謹,才能得到最佳觀測結果。
The Danshuei River is located in Northern Taiwan and flows through the metropolitan are of the Taipei City and the New Taipei City, the most densely populated area in Taiwan. Large amount of waste is discharged into the Danshuei River and strongly affects the concentrations of suspended organic matter and nutrients. Qualitative and quantitative analyses of suspended particulate matter can not only give us information about the biogeochemical processes, but can also help us understand the transportation process of the suspended solid in the Danshuei River.
In the past, the particulate organic matter (POM) was assumed comprising of anthropogenic wastes, soils and river sediments. However, according to previous observations, it was found that anthropogenic waste not an important source of POM. Because of the high correlation between particulate organic carbon (POC) and chlorophyll-a, we considered that phytodetritus is an important source of particulate organic matter in the Danshuei River. Thus this study defined the properties of phytodetritus and used them to represent a new end-member to calculate the contributions from different sources of POM in the Danshuei estuary. Using a three end member mixing model based on δ15NPN values and C/N ratios, we calculated the fractions from the three major sources of POM,namely, phytodetritus, soils and bed-rock derived sediments, in the estuary. Their contributions were, respectively, 45.4%, 51.8% and 2.8% in February 2009, and 75.3%, 17.3% and 7.5% in July 2009.
This study also investigated the concentrations of suspended solid in the estuarine and coastal environments. The results show that the concentrations of suspended solid derived from the measurements were affected by blanks, which may be contributed by salt or dissolve organic matter retained by the filters. It is necessary to carry out replicated measurements for the concentration of suspended solid and use linear regression to obtain the most reliable results.
It was found that, without blank correction, the correlation between gravimetric results and OBS data (R2 = 0.151, p = 0.046) is insignificant. After correction for the blanks by regression analysis, they were significantly correlated (R2= 0.568, p < 0.001), indicating the importance of regression analysis for blank correction. However, most of the OBS data are overestimated relative to the gravimetric results, indicating problems with the original setting of the OBS. Therefore, calibration of the OBS should be carried out very carefully in order to obtain optimal results in such complicated environments.
摘要 ii
Abstr act iv
致謝 vi
目錄 vii
表目錄 x
圖目錄 xi
第一章 緒論 1
1.1 氮循環 2
1.2 穩定同位 素 4
1.3 同位素分化作用 5
1.4 氮同位素的變化 6
1.5 可變性之反應動力同位素分化作用 8
1.6 河口之定義 9
1.7 淡水河文獻回顧 9
1.8 研究目的 10
第二章 材料與方法 12
2.1 採樣方法 . 12
2.1.1 採樣地點與時間 12
2.1.2 觀測及採樣方式 12
2.2 分析方法 14
2.2.1 氨氮同位素分析:擴散法 14
2.2.2 顆粒性有機物 (POM) 17
2.2.3 銨離子濃度測定方式 17
2.2.4 磷酸鹽濃度測定方式 18
2.2.5 亞硝酸根濃度 測定方式 18
2.2.6 硝酸根濃度測定方式 18
2.2.7 矽酸鹽濃度測定方式 19
2.2.8 鹼度 19
2.2.9 葉綠素a 20
2.2.10 溶氧 20
2.3 同位素標本之測定 20
2.3.1 連續流動質譜儀 20
2.3.2 氮同位素標準品 21
第三章 淡水河口顆粒性有機物來源之探討 22
3.1 淡水河簡介 22
3.2 樣品與分析 23
3.2.1 採樣時間與地點 23
3.2.2 樣品分析方法 23
3.3 結果 24
3.3.1 溫度 與鹽 24
3.3.2 銨與硝酸根 24
3.3.3 亞硝酸根與葉綠素 a 25
3.3.4 磷酸鹽 26
3.3.5 矽酸鹽 26
3.3.6 溶氧 26
3.3.7 鹼度與溶解性二氧化碳 26
3.3.8 顆粒性有機碳濃度與氮之變化 27
3.3.9 顆粒性氮與銨之同位素變化 27
3.4 討論 28
3.4.1 淡水河口顆粒性有機物之來源 28
3.4.2 藻類吸收銨生長之同位素分化作用 29
3.4.3 顆粒性有機物之來源推算 30
3.4.4 結果比較 35
3.4.5 藻類碎屑之濃度 35
3.5 小結 36
第四章 河口與近海環境懸浮顆粒濃度之探討 38
4.1 簡介 . 38
4.2 材料與方法 39
4.2.1 採樣時間及地點 39
4.2.2 懸浮顆粒濃度分析步驟 39
4.3 結果 40
4.4 討論 40
4.4.1 淡水河口懸浮顆粒之背景值探討 40
4.4.2 近海水體懸浮顆粒測量之背景值探討 43
4.4.3 重複測量之誤差 44
4.5 小結 . 45
第五章 結論與建議 47
5.1 結論 47
5.2 建議 49
英文參考獻 50
中文參考獻 55
附錄一 淡水河口各測站資訊 104
附錄二 銨離子濃度測定方式 105
附錄三 磷酸根濃度測定方式 109
附錄四 亞硝酸根濃度測定方式 112
附錄五 硝酸根濃度測定方式 115
附錄六 矽酸鹽濃度測定方式 118
附錄七 葉綠素a 121
附錄八 鹼度 124
附錄九 溶氧 128
英文參考文獻
Ahad, J.M.E., Ganeshram, R.S., Spencer, R.G.M., Uher, G., Upstill-Goddard, R.C., Cowie, G.L., 2006. Evaluating the sources and fate of anthropogenic dissolved inorganic nitrogen (DIN) in two contrasting North Sea estuaries. Science of the Total Environment, 372, 317-333.
Ashkenas, L.R., Johnson, S.L., Gregory, S.V., Tank, J.L., Wollhein, W.M., 2004. A stable isotope tracer study of nitrogen uptake and transformation in an old-growth forest stream. Ecology, 85, 1725-1739.
Barrie, A., Prosser, S.J., 1996. Automated analysis of light-element stable isotopes by isotope ratio mass spectrometer. Marcel Dekker, Inc, New York., 1-46.
Bigeleisen, J., 1949. The relative reaction velocities of isotopes molecules. J. Chem. Phys., 17, 675-678.
Black, K.P., Rosenberg, M.A., 1994. Suspended sand measurements in a turbulent environment: field comparison of optical and pump sampling techniques. Coastal Engineering., 24, 137-150.
Bunt, J. A. C., Larcombe, P., Jago, C. F., 1999. Quantifying the response of optical backscatter devices and transmissometers to variations in suspended particulate matter. Cont. shelf Res., 19, 1199-1220.
Cifuentes, L.A., Fogel, M.L., Pennock, J.R., Sharp, J.H., 1989. Seasonal variations in the stable nitrogen isotope ratio of ammonium in the Delaware estuary. Geochim. Cosmochim. Acta, 53, 2713-2721.
Clark, I.a.P.F., 2000. Isotope ratio mass spectrometry. Lewis Publishers, Boca Raton, Florida, 13-16.
Conner, C. S., De Visser, A. M., 1992. A laboratory investigation of particle size effects on an optical backscatterance sensor. Marine Geology., 108, 151-159.
Duce, R.A., LaRoche, J., Altieri, K., Arrigo, K.R., Baker, A.R., Capone, D.G., Cornell, S., Dentener, F., Galloway, J., Ganeshram, R.S., Geider, R.J., Jickells, T., Kuypers, M.M., Langlois, R., Liss, P.S., Liu, S.M., Middelburg, J.J., Moore, C.M., Nickovic, S., Oschlies, A., Pedersen, T., Prospero, J., Schlitzer, R., Seitzinger, S., Sorensen, L.L., Uematsu, M., Ulloa, O., Voss, M., Ward, B., Zamora, L., 2008. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science, 320, 893-897.
Fabbricino, M., Petta, L., 2007. Drinking water denitrification in membrane bioreactor/membrane contactor systems. Desalination, 210, 163-174.
Fairbridge, R., 1980. The estuary: its definition and geodynamic cycle. John Wiley &; Sons New York, 1-35.
Galloway, J.N., Schlesinger, W.H., Levy, H., Michaels, A., Schnoor, J.L., 1995. Nitrogen Fixation: Anthropogenic Enhancement Environme- ntal Response. Glob Biogeochem Cycles, 9, 235-252.
Goolsby, D.A., Battaglin, W.A., Aulenbach, B.T., Hooper, R.P., 2000. Nitrogen Flux and Sources in the Mississippi River Basin. The Science of the Total Environment, 248, 75-86.
Guillén, J., Palanques, A.,Puig, P., Durrieu de Madron, X., Nyffeler, F., 2000. Field calibration of optical sensors for measuring suspended sediment concentration in the western Mediterranean. Scientia Marine., 64, 427-435.
Hoefs, J., 2009. Stable Isotope Geochemistry. Springer Verlag, Berlin.
Holmes, R.M., McClelland, J.W., Sigman, D.M., Fry, B., Peterson, B.J., 1998. Measuring 15N–NH4+ in marine, estuarine and fresh waters: An adaptation of the ammonia diffusion method for samples with low ammonium concentrations. Marine Chemistry, 60, 235-243.
Huang, W.R., Jones, W.K., 2001. Characteristics of long-term freshwater transport in Apalachicola Bay. Journal of the American Water Resources Association, 37, 605-615.
Junk, G., Svec, H.J., 1958. The absolute abundance of nitrogen isotopes in the atmosphere and compressed gas from various sources. Geochim. Cosmochim. Acta, 14, 234-243.
Kao, S.-J., Liu, K.-K., 2000. Stable carbon and nitrogen isotope systematics in a human-disturbed watershed (Lanyang-Hsi) in Taiwan and the estimation of biogenic particulate organic carbon and nitrogen fluxes. Global Biogeochem. Cycle, 14, 189-198.
Lehninger, A.L., 1975. Biochemistry. Worth, New York, 1104.
Liu, K.K., 1979. Geochemistry of Inorganic Nitrogen Compounds in Two Marine Environments: The Santa Barbara Basin and the Ocean off Peru University of California Los Angeles, 354.
Liu, K.K., Kaplan, I.R., 1989. Eastern tropical Pacific as a source of 15N-enriched nitrate in seawater off southern California. Limn- ol.Oceanogr, 34, 820-830.
Liu, K. K., Kao, S. J., 2000. Stable carbon and nitrogen isotope systematics in a human-disturbed watershed (Lanyang-Hsi) in Taiwan and the estimation of biogenic particulate organic carbon and nitrogen fluxes. Global Biogeochemical Cycles, 14, 189-198.
Liu, K.K., Kao, S.J., Wen, L.S., Chen, K.L., 2007. Carbon and nitrogen isotopic compositions of particulate organic matter and biogeo- chemical processes in the eutrophic Danshuei Estuary in northern Taiwan. Science of the Total Environment, 382, 103-120.
Liu, K. K., Kao, S. J., 2007. A three end-member mixing model based on isotopic composition and elemental ratio. Terrest. Atmospheric Oceanic Sci., 18, 1067-1075.
Liu, K.K., Seitzinger, S., Mayorga, E., Harrison, J., Ittekkot, V., 2008. Fluxes of nutrients and selected organic pollutants carried by rivers. SCOPE 70. Island Press, Washington D.C., 141-167.
Liu, K.K., Kao, S.J., Chiang K.P., Gong, G.C., Chang, J., Cheng, J.S., Lan, C.Y., 2013. Concentration dependent nitrogen fractionation during ammonium uptake by phytoplankton under an agal bloom condition in the Danshuei estuary, northern Taiwan. Marine Chemistry, 157, 242-252.
Mackenzie, F.T., Ver, L.M., Sabine, C., Lane, M., Lerman, A., 1993. C, N, P, S global biogeochemical cycles and modeling of global change. In: Wollast, R., Mackenzie, F.T., Chou , L. (Eds.), Interactions of C, N, P and S Biogeochemical cycles and global change. Springer-Verlag, 1-62.
Mariotti, A., 1983. Atmospheric nitrogen is a reliable standard for natural 15N abundance. Nature, 303, 685-687.
Meybeck, M., 1982. Carbon, nitrogen, and phosphorus transport by world rivers. American Journal of Science, 282, 401-450.
Morel, F., M. M., Hering, J.G., 1983. Principles and Applications of Aquatic Chemistry. John Wiley and Sons, inc, New York.
Pai, S.C., Yang, C.C., Riley, J.P., 1990. Formation kinetics of the pink azo dye in the determination of nitrite in natural waters. Anal. Chim. Acta, 232, 245-349.
Pai, S.C., Tsau, Y.J., Yang, T.I., 2001. pH and buffering capacity problems involved in the determination of ammonia in saline water using the indophenol blue spectrophotometric method. Analytica Chimica Acta, 434, 209-216.
Pennock, J.R., Velinsky, D.J., Ludlam, J.M., Sharp, J.H., Fogel, M.L., 1996. Isotopic fractionation of ammonium and nitrate during uptake by Skeletonema costatum: Implications for delta N-15 dynamics under bloom conditions. Limnol. Oceanogr 41, 451-459.
Pritchard, D.W., 1967. What is an estuary: Physical Viewpoint. Washington, D. C.: Estuaries, 3-5.
Schlesinger, W.H., 1991. Biogeochemistry-an analysis of global change. Academic press.
Sigman, D.M., Altabet, M.A., Michener, R., McCorkle, D.C., Fry, B., Holmes, R.M., 1997. Natural abundance-level measurement of the nitrogen isotopic composition of oceanic nitrate: an adaptation of the ammonia diffusion method. Marine Chemistry, 57, 227-242.
Sigman, D.M., Casciotti, K.L., Andreani, M., Barford, C., Galanter, M., Bohlke, J.K., 2001. A Bacterial Method for the Nitrogen Isotopic Analysis of Nitrate in Seawater and Freshwater. Anal. Chem, 73, 4145-4153.
Sutherland, T. F., Lane, P. M., Amos, C. L., Downing, J., 2000. The calibration of optical backscatter sensors for suspended sediment of varying darkness levels. Marine Geology., 162,587-597.
Sweeney, R.E., Liu, K.K., Kaplan, I.R., 1978. Organic nitrogen isotopes and their uses in determining the source of sedimentary nitrogen. In: Robinson, B.W. (Ed.), Stable Isotopes in the Earth Science. DSIR, New Zealand, 9-26.
Tieszen, L.L., Boutton, T.W., 1988. Stable isotopes in terrestrial ecosystem research. Springer, Berlin, 167-195.
Vitousek, P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler, D.W., Schlesinger, W.H., Tilman, D.G., 1997. Human Alteration of the Global Nitrogen Cycle: Sources and Consequences. Ecological Applications, 7, 37-750.
Vitousek, P.M., Mooney, H.A., Lubchenco, J., Melillo, J.M., 1997. Human Domination of Earth's Ecosystems. Science, 277, 494-499.
Wada, E., Kadonaga, T., Matsuo, S., 1975. 15N in nitrogen of naturally occurring substances and global assessment of denitrification from isotopic viewpoint. Geochem. J, 9, 139-148.
Wada, E., 1980. Nitrogen isotope fractionation and its significance in biogeochemical processes occurring in marine environments. In: Goldberg, E., Horible, Y., Saruhashi, K. (Eds.), Isotope Marine Chemistry. Uchida-Rokakuho, Tokyo, 375-398.
Wada, E., Minagawa, M., Mizutani, H., Tsuji, T., Imaizumi, R., Karasawa, K., 1987. Biogeochemical studies on the transport of organic matter along the Otsuchi River watershed, Japan. Estuarine Coastal Shelf Sci., 25, 321-336.
Wada, E., Hattori, A., 1991. Nitrogen in the sea: forms, abundances, and rate processes. CRC Press, Florida.
Welschemeyer, N.A., 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and phaeopigments. Limnology &; Oceanography, 39, 1985-1992.
Wen, L.S., Jiann, K.T., Liu, K.K., 2008. Seasonal variation and flux of dissolved nutrients in the Danshuei Estuary, Taiwan: A hypoxic subtropical mountain river. Estuarine, Coastal and Shelf Science, 78, 694-704.
Yoshikawa, C., Yamanaka, Y., Nakatsuka, T., 2005. An Ecosystem Model Including Nitrogen Isotopes:Perspectives on a Study of the Marine Nitrogen Cycle. Journal of Oceanography, 61, 921-942.
Zhang, J., 1996. Nutrient elements in large Chinese Estuaries. ContinentalShelf Research, 16, 1023-1045.


中文參考文獻
龔國慶, 1992. 台灣東北海域黑潮鋒面水文化學之研究. 國立台灣大學海洋科學研究所博士論文, 456.
陳鎮東, 1994. 海洋化學 國立編譯館 茂昌圖書有限公司, 229-260.
白書禎, 郭廷瑜, 鐘仕偉, 蘇宗德, 1998. 疊氮修正希巴辣光度測氧法及其在環境監測上應用. 化學(中國化學會) 56, 173-185.
孫毓璋, 彭竟凱, 2001. 大漢溪流域水體環境中重金屬及營養鹽分佈的探討. 台灣海洋學刊, 39、105-120.
陳冠倫, 2001. 水體中懸浮顆粒有機碳、氮同位素之研究:淡水河及東海南部. 國立台灣大學海洋研究所碩士論文, pp. 98.
謝蕙蓮, 2001. 由底棲群聚看淡水河河口生態品質. 台灣海洋學刊, 39、121-134.
彭明德, 2001. 淡水河之硝化現象模擬. 國立臺灣大學土木工程學研究所碩士論文 pp. 89.
黃金山, 2001. 淡水河流域防洪計畫. 台灣海洋學刊, A24-A42.
方天熹, 2001. 溶解態鋁在淡水河河口及近岸海域之分布. 台灣海洋學刊, 39、93-104.
黃蔚人, 2003. 淡水河系中上游河水中氮物種之時空變化. 國立台灣大學海洋研究所碩士論文, pp. 153.
彭宗仁, 劉滄棽, 林幸助, 2006. 穩定同位素在農業及生態環境上之應用. 台灣農業研究, 55-90.
莊竣皓, 2006. 淡水河流域鹼度、酸鹼值與主要離子之時空變化. 國立中央大學水文科學研究所碩士論文, pp. 190.
鄭峻翔, 2010. 淡水河口之顆粒性有機碳、氮同位素及溶解性無機氮同位素之研究. 國立中央大學水文科學研究所碩士論文, pp. 187.
鄭宇凡, 2011.濁水溪河口懸浮沉積物輸送之調查研究. 國立中央大學水文科學研究所碩士論文, pp. 239.
中華民國國家標準檢驗法, 2007. 深層海水檢驗法-磷酸鹽之測定. CNS 15091-15012, N 17001-15012.
中華民國國家標準檢驗法, 2007. 深層海水檢驗法-亞硝酸鹽之測定. CNS 15091-15015, N 17001-15015.
中華民國國家標準檢驗法, 2007. 深層海水檢驗法-矽酸鹽之測定. CNS 15091-15013, N 17001-15013.
中華民國國家標準檢驗法, 2008. 深層海水檢驗法-氨之測定. CNS 15091-15029, N 17001-15029.
中華民國國家標準檢驗法, 2008. 深層海水檢驗法-葉綠素a之測定. CNS 15091-15030, N 17001-15030.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊