跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 18:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賽逸昕
研究生(外文):I-hsi Sai
論文名稱:探討白腐真菌之漆氧化酵素的最佳生產條件
論文名稱(外文):Optimization of Growth Condition and Laccase Production by White Rot Fungi
指導教授:趙維良趙維良引用關係
指導教授(外文):W.L.Chao
學位類別:碩士
校院名稱:東吳大學
系所名稱:微生物學系
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:76
中文關鍵詞:漆氧化酵素白腐真菌氮源生長溫度.降解剛果紅
外文關鍵詞:laccasewhite-rot funginitrogengrowth temperaturedegradationcongo red
相關次數:
  • 被引用被引用:11
  • 點閱點閱:2368
  • 評分評分:
  • 下載下載:172
  • 收藏至我的研究室書目清單書目收藏:0
自林業試驗所取得28株白腐真菌,以及從環境篩選出具降解染料(剛果紅)的11株真菌和實驗室驗室6株真菌,先用PDA含100 ppm剛果紅和低氮磷酸鹽培養基 (1.2 mM)含100 ppm剛果紅測試其對染料退色能力,選擇能完全將染料降解的菌株共12株真菌,將其培養在PDB中測試第2、4、6、8天時的漆氧化酵素產量,選擇酵素產量高於10000 U的菌株共5株。改變磷酸鹽培養基中的氮源:soytone、yeast extract、peptone、ammonium tartrate、NH4Cl、KNO3 、 NH4NO3,找出最適合漆氧化酵素生產的氮源,另外將這5株白腐真菌培養在30-70 ℃溫度範圍,測試其菌絲生長情形,發現A 8在30 ℃生長最快12.1 mm/day,但在40 ℃時則無法生長,而TFRI 707在40 ℃生長最快12.7 mm/day,超過50 ℃所有測試菌株都不生長。挑選氮源測試中漆氧化酵素生產量最高的兩株TFRI 707和A 8,培養在pH 3.5-5.5下測試酵素產量,發現在pH 5.5酵素產量最好。金屬離子則以不添加的方式測試其影響,其中以銅離子的影響最大。添加誘導物實驗中,veratryl alcohol可以同時誘導兩株菌的漆氧化酵素產量。初步分析TFRI 707和A 8分泌的漆氧化酵素特性,隨著pH值越接近中性酵素活性越低,在pH 3時對ABTS有最大的酵素活性,50 ℃時3小時內酵素活性還有70 %,隨著溫度上升酵素活性喪失越快,TFRI 707和A 8的酵素適應70 ℃超1小時後,酵素活性分別低於34 %和8 %。在活性染的結果發現,半固體培養下A 8有較多的同功異構酶,TFRI 707則剛好相反,分子量分別為50-90 kDa和40-50 kDa;在SDS-PAGE中A 8的漆氧化酵素分子量約為50-60 kDa,TFRI 707分子量則約30-40 kDa。
White rot fungi produce three main extracellular enzymes involved in ligninolysis, including laccase, lignin peroxidase (LiP) and manganese peroxidase (MnP). These enzymes are capable of initiating the oxidation of lignin by a free-radical mechanism which also led to the degradation of a wide variety of normally very recalcitrant environmental pollutants. Laccase is a glycosylated polyphenol oxidase which contains four copper ions per molecule and has shown good potential to be used in bioremediation, biopulping, biobleaching, medicine, and textile industry. Forty-five isolates of white rot fungi were screened for their ability to degrade congo red. Based on the decoloration ability, twelve isolates were selected for further study. They were grown in PDB and phosphate buffer culture medium (PBCM) for laccase activity assay. Five isolates were chosen for their high level of laccase production (>10000 U/L). In order to find out the best nitrogen source for laccase production, we have tested 7 different nitrogen sources in PBCM. With yeast extract and NH4Cl as nitrogen source, isolate TFRI 707 and A 8 have shown the highest laccase production, respectively. When study the effect of temperature on their growth, the data indicated that TFRI 707 and A 8 had higher growth rats on 40 ℃ and 30 ℃respectively. Various factors, including pH (3.5-5.5), metal ions (Mg, Mn, Ca, Cu, Fe, Zn) and inducer (ethanol, veratryl alcohol, ferulic acid, 2,5-xylidine) on laccase production were also studied. The optimal pH for laccase production was 5.5 for both isolates. When Cu supplement was deleted from the medium, decreases in laccase production were observed for both of them. As for the inducers, only veratryl alcohol had a substantial effect on laccase production. With ABTS as the substrate, laccase has an optimum activity at pH 3, and an optimum temperature at 30 ℃. In liquid and semi-solid medium, isolate A8 produce 3 and 4 isoenzymes of laccase, respectively, while 4 and 3 isoenzymes were detected for isolate TFRI 707. Molecular weight was determined using Native PAGE, and laccases secreted by isolate A 8 were between 50-90 kDa, and those excreted by TFRI 707 were between 40-50 kDa. When assaying with SDS-PAGD, the molecular weight of laccases secreted by A 8 were between 50-60 kDa and by TFRI 707 were between 30-40 kDa.
中文摘要………………………………………………………………..Ⅰ
英文摘要………………………………………………………………..Ⅲ
表目錄…………………………………………………………………..Ⅴ
圖目錄…………………………………………………………………..Ⅵ
前言………………………………………………………………………1
材料與方法………………………………………………………………9
結果……………………………………………………………………..16
討論……………………………………………………………………..23
參考文獻………………………………………………………………..31
圖表……………………………………………………………………..45
王美惠,1995,白腐真菌對偶氮染料去色作用之探討。東吳大學微生物學系碩士論文。

Alves da Cunha, M. A., A. M. Barbosa, E. C. Giese, and R. F. Dekker. 2003. The effect of carbohydrate carbon sources on the production of constitutive and inducible laccases by Botryosphaeria sp. J. Basic Microbiol. 43: 385–392.

Arora, S. D., and P. K. Gill. 2000. Laccase production by some white rot fungi under different nutritional conditions. Biores. Technol. 73: 283-285.

Arora, S. D., and P. K. Gill. 2001. Effects of various media and supplements on laccase production by some white rot fungi. Biores. Technol. 77: 89-91.

Asther, M., C. Capdevila, and G. Corrieu. 1988. Control of lignin peroxidase production by Phanerochaete chrysosporium INA-12 by temperature shifting. Appl. Environ. Microbiol. 54:3194-3196.

Aust, D. A. 1990. Degradation of environmental pollutants by Phanerochaete chrysosporium. Microb. Ecol. 20:197-209.

Aust, S.D., and J.T. Benson. 1993. The fungus among us: use of white rot fungi to biodegrade environmental pollutants. Environ. Health Perspect. 101: 232–233.

Bajpai, P.. 1999. Application of enzymes in the pulp and paper industry. Biotechnol. Prog. 15: 147–157.

Baldrin, P. 2004. Purification and characterization of laccase from the white-rot fungus Daedalea quercina and decolorization of synthetic dyes by the enzyme. Appl. Microbiol. Biotechnol. 63: 560-563.

Baldrian, P., and J. Gabriel. 2002. Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiol. Lett. 206: 69-74.

Barclay, C. D., R. L. Legge, and G. F. Farquhar. 1993. Modelling the growth kinetics of Phanerochaete chrysosporium in submerged static culture. Appl. Environ. Microbiol. 59: 1887-1892.

Bourbonnais, R., and M.G. Paice. 1990. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett. 267: 99–102.

Breen, A., and F. L. Singleton. 1999. Fungi in lignocellulose breakdown and biopulping. Curr. Opin. Biotechnol. 10:252-258.

Brown, J. A., J. K. Glenn, and M. H. Gold. 1990. Manganese regulates expression of manganese peroxidase by Phanerochaete chrysosporium. J. Bacteriol. 172: 3125–3130.

Bumpus, J. A., and B. J. Brock. 1988. Biodegradation of crystal violet by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 54: 1143–1150.

Buswell, J. A., Y. Cai, and S.-T. Chang. 1995. Effect of nutrient nitrogen and manganese on manganese peroxidase and laccse production by Lentinula (Lentinus) edodes. FEMS Microbiol. Lett. 128: 81-88.

Camarero, S., G. C. Galletti, and A. T. Martinez. 1994. Preferential degradation of phenolic lignin units by two white rot fungi. Appl. Environ. Microbiol. 60: 4509-4516.

Call, H.P., Mücke I. 1997. History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozyme®-process). J. Biotechnol. 53:163-202.

Chivukula, M and V. Renganathan. 1995. Phenolic azo dye oxidation by laccase form Pyricularia oryzae. Appl. Environ. Microbiol. 61: 4374-4377.

Claus, H. 2004. Laccases: structure, reactions, distribution. Micron. 35: 93-96.

Collins, P. J., and A. D. W. Dobson. 1997. Regulation of laccase gene transcription in Trametes versicolor. Appl. Environ. Microbiol. 63: 3444-3450.

Crowe, J. D. and S. Olsson. 2001. Induction of Laccase Activity in Rhizoctonia solani by Antagonistic Pseudomonas fluorescens Strains and a Range of Chemical Treatments. Appl. Environ. Microbiol. 67: 2088-2094.

d'Acunzo, F., Galli, C., and Masci., B. 2002. Oxidation of phenols by laccase and laccase-mediator systems. Solubility and steric issues. Eur. J. Biochem. 269: 5330–5335.

Davis, M.W., J.A. Glaser, J.W. Evans, and R.T. Lamar. 1993. Field evaluation of lignin degrading fungu Phanerochaete sordida to treat creosote contaminated soil. Environ. Sci. Technol. 27: 2572-76.

Dedeyan, B., A. Klonowska, S. Tagger, T. Tron, G. Iacazio, G. Gil, and J. Petit. 2000. Biochemical and molecular characterization of a laccase from Marasmius quercophilus. Appl. Environ. Microbiol. 66: 925-929.

Dekker, R. F. H. and A. M. Barbosa. 2001. The effect of aeration and veratryl alcohol on the production of two laccases by the ascomycete Botryosphaeria sp. Enzyme Microb. Technol. 28, 81-88.

Dekker, R. F. H., A. M. Barbosa, and K. Sargent. 2002. The effect of lignin-related compounds on the growth and production of laccases by the ascomycete, Botryosphaeria sp. Enzyme Microb. Technol. 30, 374-380.

Dietrich, D. M., and R. T. Lamar.1990. Selective Medium for Isolating Phanerochaete chrysosporium from Soil. Appl. Environ. Microbiol. 56: 3088–3092.

Dietrich, D., W. J. Hickey, and R. Lamar. 1995. Degradation 4,4’-dichlorobiphenyl, 3,3’, 4,4’-tetrachlorobiphenyl, and 2,2’, 4,4’, 5,5’-hexachlorobiphenyl by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 61: 3904–3909.

Dorado, J., G. Almendros, S. Camarero, A. T. Martinez, T. Vares, A. Hatakka. 1999. Transformation of wheat straw in the course of solid-state fermentation by four ligninolytic basidiomycetes. Enzyme Microb. Technol. 25: 605-612.

D’Souza, T. M., K. Boominathan, and C. A. Reddy. 1996. Isolation of Laccase Gene-Specific Sequences from White Rot and Brown Rot Fungi by PCR. Appl. Environ. Microbiol. 62: 3739–3744.

D'Souza, T. M., C. S. Merritt, and C. A. Reddy. 1999. Lignin-Modifying Enzymes of the White Rot Basidiomycete Ganoderma lucidum. Appl. Environ. Microbiol. 65: 5307-5313.

Duran, N., M. A. Rosa, A. D’Annibale, and L. Gianfreda. 2002. Application of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme Microb. Technol. 31:907-931.

Eggert, C., U. Temp, J. F.D. Dean, K.-E. L. Eriksson. 1996. A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett. 391: 144-148.

Eggert, C., U. Temp, and K-E. L. Eriksson. 1996. The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl .Environ. Microbiol. 62:1151-1158.

Eichlerova, I., L. Homolka, F. Nerud, F. Zadrazil, P. Baldrian, and J. Gabriel. 2000. Screening of Pleurotus ostreatus for their ligninolytic properties during cultivation on natural substrates. Biodegradation 11: 279-287.

Fernández-Larrea, J., and U. Stahl. 1996. Isolation and characterization of a laccase gene from Podospora anserina. Mol. Gen. Genet. 252: 539-551.

Ferraz, A., A. M. Cordova, and A. Machuca. 2003. Wood biodegradation and enzyme production by Ceriporiopsis subvermispora during solid-state fermentation of Eucalyptus grandis. Enzyme Microb. Technol. 32: 59-65.

Ghosh, A., J. C. Frankland, C. F. Thurston, and C. H. Robinson. 2003. Enzyme production by Mycena galopus mycelium in artificial media and in Picea sitchensis F1 horizon needle litter. Mycol. Res. 107: 996-1008.

Glenn, J. K., and M. H. Gold. 1983. Decolorization of Several Polymeric Dyes by the Lignin-Degrading Basidiomycete Phanerochaete chrysosporium. Appl. Environ. Microbiol. 45: 1741-1747.

Heinzkill, M., L. Bech, T. Halkier, P. Schneider, and T. Anke. 1998. Characterization of Laccases and Peroxidases from Wood-Rotting Fungi (Family Coprinaceae). Appl Environ Microbiol. 64: 1601-1606.

Herpoel, I., S. Moukha, L. Lesage-Meessen, J-C. Sigoillot, and M. Asther. 2000. Selection of Pycnoporus cinnabarinus strains for laccase production. FEMS Microbiol. Lett. 183: 301-306.

Hou, H., J. Zhoua, J. Wang, C. Dua, and B. Yan. 2004. Enhancement of laccase. production by Pleurotus ostreatus and its use for the decolorization of. anthraquinone dye. Process Biochem. 39: 1415-1419.

Ingold, C. T., and H. J. Hudson. 1993. The biology of fungi. 6th edition. Chapman and Hall, London, UK. 224 p.

Johannes, C., and A. Majcherczyk. 2000. Natural Mediators in the Oxidation of Polycyclic Aromatic Hydrocarbons by Laccase Mediator Systems. Appl. Environ. Microbiol. 66: 524–528.

Katagiri, N., Y. Tsutsumi, and T. Nishida. 1995. Correlation of brightening with cumulative enzyme activity related to lignin biodegradation during biobleaching of kraft pulp by white rot fungi in the solid-state fermentation system. Appl. Environ. Microbiol. 61: 617-622.

Kerem, Z., and Y. Hadar. 1995. Effect of manganese on preferential degradation of lignin by Pleurotus ostretus during solid-state fermentation. Appl. Environ. MIcrobiol. 61: 3057-3062.

Kirk, T. K., and R. L. Farrell. 1987. Enzymatic "combustion": the microbial degradation of lignin. Annu. Rev. Microbiol. 41:465-505.

Klonowska, A., J. Le Petit, and T. Tron. 2001. Enhancement of minor laccases production in the basidiomycete Marasmius quercophilus C30. FEMS Microbiol. Lett. 200: 25-30.

Lang, E., A. Gonser, F. Zadrazil. 2000. Influence of incubation temperature on activity of ligninolytic enzymes in sterile soil by Pleurotus sp. and Dichomitus squalens. J. Basic. Microbiol. 40: 33-39.

Larrondo, L. F., L. Salas, F. Melo, R. Vicuña, and D. Cullen. 2003. A Novel Extracellular Multicopper Oxidase from Phanerochaete chrysosporium with Ferroxidase Activity. Appl. Environ. MIcrobiol. 69: 6257-6263.

Leatham, G. F., and T. K. Kirk. 1983. Regulation of ligninolytic activity by nutrient nitrogen in white-rot basidiomycetes. FEMS Microbiol. Lett. 16: 65-67.

Leonowicz, A., A. Matuszewska, J. Luterek, D. Ziegenhagen, M. Wojtas-Wasilewska, N.-S. Cho, M. Hofrichter, and J. Rogalski. 1999. Biodegradation of lignin by white-rot fungi. Fungal Genet. Biol. 27: 175–185.

Leontievsky, A. A., T. Vares, P. Lankinen, J. K. Shergill, N. N. Pozdnyakova, N. M. Myasoedova, N. Kalkkinen, L. A. Golovleva, R. Cammack, C. F. Thurston, and A. Hatakka. 1997. Blue and yellow laccases of ligninolytic fungi. FEMS Microbiol. Lett. 156: 9-14.

Leung, P-C, and S. B. Pointing. 2002. Effect of different carbon and nitrogen regimes on Poly R decolorization by white-rot fungi. Mycol. Res. 106: 86-92.

Levin, L., L. Papinutti, and F. Forchiassin. 2004. Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes. Biores. Technol. 94: 169-76.

Lobos, S., J. Larraín, L. Salas, D. Cullen, and R. Vicuña. 1994. Isozymes of manganese-dependent peroxidase and laccase produced by the lignin-degrading basidiomycete Ceriporiopsis subvermispora. Microbiology. 140: 1691-1698.

Lomascolo, E. R., I. Herpoel-Gimbert, M. Delattre, J. L. Robert, J. Georis, T. Dauvrin, J-C. Sigoillot, and M. Asther. 2003. Overproduction of laccase by a monokaryotic strain of Pycnoporus cinnabarinus using ethanol as inducer. J. Appl. Microbiol. 94: 618-624.

Maheshwari, R., G. Bharadwaj, and M. K. Bhat. 2000. Thermophilic fungi: their physiology and enzymes. Microbiol. Mol. Biol. Rev. 64: 461-488.

Martinez, A. T., S. Camarero, F. Guillen, A. Gutierrez, C. Munoz, E. Varela, M. J. Martinez, J. M. Barrasa, K. Ruel, and J. M. Pelayo. 1994. Progress in biopulping of non-woody materials: chemical, enzymatic and ultrastructural aspects of wheat straw delignification with ligninolytic fungi from the genus Pleurotus. FEMS Microbiol. Rev. 13: 265–274.

McIlvaine, T.C. 1921. A buffer solution for colorimetric comparison. J. Biol. Chem. 49: 185-186.

Morais, H., A. C. Ramos, T. Cserhati, E. Forgacs, Y. Darwish, and Z. Illes. 2001. Effect of the composition of culture media on the laccase production of Lentinus edodes strains. Acta. Biotechnol. 21:307-320.

Muñoz, C., F. Guillén, A. T. Martínez, and M. J. Martínez. 1997. Induction and characterization of laccase in the ligninolytic fungus Pleurotus eryngii. Curr. Microbiol. 34: 1-5.

Nagai, M., M. Kawata, H. Watanabe, M. Ogawa, K. Saito, T. Takesawa, K. Kanda, and T. Sato. 2003. Important role of fungal intracellular laccase for melanin synthesis: purification and characterization of an intracellular laccase from Lentinula edodes fruit bodies. Microbiology. 149: 2455-2462.

Paszczynski, A., and R. L. Crawford. 1995. Potential for Bioremediation of Xenobiotic Compounds by the White-Rot Fungus Phanerochaete chrysosporium. Biotechnol. Prog. 11: 368-379.

Peláez, F., M. J. Martínez, and A. T. Martínez. 1995. Screening of 68 species of basidiomycetes for enzymes involved in lignin degradation. Mycol. Res. 99: 37-42.

Perez, J., and T. W. Jeffries. 1990. Mineralization of 14C-Ring-Labeled Synthetic Lignin Correlates with the Production of Lignin Peroxidase, not of Manganese Peroxidase or Laccase. Appl. Environ. Microbiol. 56: 1806-1812.

Périé, F. H., and M. H. Gold. 1991. Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens. Appl. Environ. Microbiol. 57: 2240-2245.

Rittstieg, K., A. Suurnäkki, T. Suortti, K. Kruus, G. M. Guebitz, and J. Buchert. 2003. Polymerization of Guaiacol and a Phenolic -O-4-Substructure by Trametes hirsuta Laccase in the Presence of ABTS. Biotechnol. Prog. 19: 1505-1509.

Rodriguez Couto, S., M. Gundin, M. Lorenzo, and M. A. Sanroman. 2002. Screening of supports and inducers for laccase production by Trametes versicolor in semi-solid-state conditions. Proc. Biochem. 38: 249-255.

Saparrat, M. C. N., F. Guillén, A. M. Arambarri, A. T. Martínez, and M. J. Martínez. 2002. Induction, Isolation, and Characterization of Two Laccases from the White Rot Basidiomycete Coriolopsis rigida. Appl. Environ. Microbiol. 68: 1534-1540.

Scheel, T., M. Höfer, S. Ludwig, and U. Hölker. 2000. Differential expression of manganese peroxidase and laccase in white-rot fungi in the presence of manganese and aromatic compounds. Appl. Microbiol. Biotechnol. 54: 686-691.

Schultz, A., U. Jonas, E. Hammer, and F. Schauer. 2001. Dehalogenation of chlorinated hydroxybiphenyls by fungal laccase. Appl. Environ. Microbiol. 67: 4377-4381.

Spiker, J. K., Crawford D. L., Crawford R. L. 1992. Influence of 2,4,6-trinitrotoluene (TNT) concentration on the degradation of TNT in explosive-contaminated soils by the white-rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58: 3199–3202.

Srinivasan, C., T.M. Dsouza, K. Boominathan and C.A. Reddy. 1995. Demonstration of Laccase in the White Rot Basidiomycete Phanerochaete chrysosporium BKM-F1767. Appl. Environ. Microbiol. 61: 4274-4277.

Tagger, S., C. Périssol, G. Gil, G. Vogt, and J. Le Petit. 1998. Phenoloxidases of the white-rot fungus Marasmius quercophilus isolated from an evergreen oak litter (Quercus ilex L.). Enzyme. Microb. Technol. 23: 372-379.

Tansey, M. R., and T. D. Brock. 1972. The upper temperature limit for eukaryotic organisms. Proc. Natl. Acad. Sci. USA. 69:2426-2428.

Thurston, C. F. 1994. The structure and function of fungal laccases. Microbiology. 140:19-26.

Whettena, R., and R. Sederoff. 1995. Lignin Biosynthesis. The Plant Cell. 7: 1001-1013.

Vares, T., M. Kalsi, and A. Hatakka. 1995. Lignin peroxidases, manganese peroxidases, and other ligninolytic enzymes produced by Phlebia nadiata during solid-state fermentation of wheat straw. Appl. Environ. Microbiol. 61: 3515-3520.

Vyas, B. R. M., J. Volc, and V. Sasek. 1994. Effects of temperature on the production of manganese peroxidase and lignin peroxidase by Phanerochaete chrysosporium. Folia Microbiol. 39: 19-22.

Wesenberg, D., I. Kyriakides, and S. N. Agathos. 2003. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 22: 161-187.

Wong, Y., and J. Yu. 1999. Laccase-catalyzed decolorization of synthetic dyes. Wat. Res. 33: 3512-3520.

Yoshida, H. 1883. Chemistry of Lacquer (Urushi) part 1. J. Chem. Soc. 43: 472-486.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊