跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 01:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許志淵
研究生(外文):Chih-Yuan Hsu
論文名稱:利用Chlorella vulgaris降低廢水化學需氧量(COD)及移除重金屬Cr(VI)與固碳之研究
論文名稱(外文):The study of chromium and chemical oxygen demand (COD) reduction and carbon fixation by using Chlorella vulgaris
指導教授:顏宏偉
指導教授(外文):Hong-Wei Yen
口試委員:張嘉修魏毓宏藍祺偉
口試委員(外文):Chia-Hsiu ChangYu-Hung WeiChi-Wei Lan
口試日期:2017-07-14
學位類別:碩士
校院名稱:東海大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:85
中文關鍵詞:Chlorella vulgaris生物吸附重金屬六價鉻還原GSH廢水處理化學需氧量串聯培養系統
外文關鍵詞:Chlorella vulgarisBiosorptionChromium (VI)GSHWaste water treatmentChemical oxygen demandSustainable cultivation systemCarbon fixation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:510
  • 評分評分:
  • 下載下載:76
  • 收藏至我的研究室書目清單書目收藏:0
隨著人類生活品質的提升,大家也開始注重與大自然的相處,除了溫室氣體排放外,由於工業區廢水排放常見重金屬含量偏高,尤其六價鉻水體污染為當今嚴重的環境問題,而含有鉻的產品若沒經過妥善回收處理,鉻汙染將遍及土壤及水中,對臺灣的環境造成嚴重傷害,其中Cr(III)是人體必需營養素,可幫助人體使用糖分、蛋白質及脂肪的必須營養素,且三價鉻造成的毒性影響也較六價鉻低許多,而高濃度的六價鉻會傷害鼻子及造成癌症,食入後也會造成貧血或腸胃的損傷。因此,利用Chlorella具有吸附廢水中重金屬的能力,探討微藻吸附Cr(VI)的效果。綜合實驗結果,已知微藻移除重金屬速率約在2.50 ~ 3.33 mg /L.day,進而延伸探討微藻如何移除Cr(VI),發現綠藻內含有具抗氧化功能的谷胱甘肽(GSH),在微藻進行重金屬移除的過程中,谷胱甘肽(GSH)也可能少部分的使Cr(VI)轉變為Cr(III),且當微藻中谷胱甘肽(GSH)濃度越大,將可以還原越多的Cr(VI),但反應順序為微藻還原酵素皆反應完後,才會由抗氧化劑谷胱甘肽(GSH)反應,證實了微藻在移除Cr(VI)的過程中,不只是將Cr(VI)吸附還有少部分的Cr(VI)被綠藻還原酵素與抗氧化劑GSH還原成Cr(III)。
此外,在台灣,許多生活廢水和生產污水時常在未經過處理就直接排入河川中,使得含有高營養物質、磷、有機物等廢水直接汙染了河川,導致河川生態受到影響和破壞,負荷不了這麼多汙染的河川,也逐漸的變得混濁和惡臭及蚊蟲孳生。因此,利用Chlorella具有代謝有機物等高營養物質的能力與培養週期短且穩定等特性,探討利用批次(Batch)及連續式(Continuous)反應培養C. vulgaris並同時去除廢水中化學需氧量(COD)。綜合實驗結果,在批次培養方面,以稀釋50 %的葡萄糖碳源發酵紅酵母後之廢水材料最適合作為微藻的生長環境,培養10天約可以降低廢水中7000 mg/L 的化學需氧量,在連續式培養上,以水力停留時間5天最適合微藻生長以及菌體累積,培養10天後,一天約可以降低廢水中10000 mg/L的化學需氧量,找出最佳的培養條件後,進而探討放大反應體積與改變反應形式對於降低廢水中化學需氧量之效果,得到在批次培養下,放大為5L反應器與改變反應形式,淨化效果提升至10天降低廢水中化學需氧量10000 mg/L,而連續式培養下,放大為5L反應器與改變反應形式,設定HRT 5天,淨化效果提升至10天後,每天降低廢水中化學需氧量 14000 mg/L,發現改變反應體積與反應形式可以提升降低廢水中化學需氧量的效果,也得到對於微藻降低水中化學需氧量以連續式反應為最佳的反應設置條件,整體系統可以維持微藻藻種濃度約2.0 g/L,且具有更好的化學需氧量移除效果與廢水使用量。
探討完重金屬的移除與降低廢水化學需氧量之外,最後討論利用串聯培養並進行固碳實驗,本次研究將黏紅酵母菌Rhodotorula glutinis及小球藻Chlorella vulgaris之生物反應器相互串聯,利用R. glutinis在發酵過程中代謝碳源並釋出CO2,再將CO2供給C. vulgaris做為碳源使用。由此系統供給CO2濃度培養C. vulgaris得到藻體平均濃度為1.51 g /L,故證實R. glutinis所釋出之CO2可用來培養C. vulgaris。此外,R. glutinis釋出之氣體,CO2含量大約為2.0 %,每一克的紅酵母菌體,每天可產出0.142 kg CO2 ;而經由微藻固碳反應後,C. vulgaris釋出之CO2含量大約為0.2 %,每一克的微藻藻體,每天可固定1.08 kg CO2生成綠藻細胞,故此串聯系統之微藻C. vulgaris可有效固定R. glutinis 所釋出之CO2達35.6 %,結果顯示此一串聯系統可有效利用好氧系統排放之二氧化碳,達到系統淨排放及循環共生之目的。

With the improvement of human quality of life, environmental problems at the same time become the focus of global attention. Green house gas emission and heavy metals pollution has become a global issue of concern due to their higher toxicities. Especially, Cr(VI) is introduced in the environment mainly as a consequence of its industrial use and it has been causing serious environmental pollution due to its carcinogenicity.
In this study, the possible use of Chlorella vulgaris biomass as an alternative biosorbent for Cr (VI) removal was investigated. Therefore, the use of C. vulgaris has the ability to adsorb heavy metals in wastewater, and to explore the effect of microalgae adsorbing heavy metal Cr(VI). The results showed that microalgae can removal of Cr (VI). And then extend the discussion of microalgae how to remove heavy metals Cr (VI). It was found that glutathione (GSH) in C. vulgaris could decrease the heavy metal Cr(VI) into Cr(Ⅲ) in the process of heavy metal removal in microalgae, and the greater the concentration of glutathione (GSH), the greater the reduction of heavy metals Cr (VI). But the reaction sequence is microalgae reduction enzyme exhausted, the antioxidant glutathione will be the reaction. It is confirmed that Cr (VI) is not only adsorbed by algae, but also a small part of Cr (VI) is reduced to Cr(Ⅲ) by reduction enzyme and antioxidant during the removal of heavy metal Cr (VI) by microalgae.
Additionally In Taiwan, many domestic sewage and production wastewater are often discharged into rivers, untreated, high levels of nutrition, phosphorus, organic matter and other waste water directly pollute the river, causing the river ecology to be affected and damaged, The river suffered from severe pollutions has gradually become muddy and foul, and then lots of mosquitos and insects have bred in it. Therefore, use of Chlorella has the ability to metabolize organic matter and other high nutrient capacity and it's culture cycle is short and stable, to explore the use of batch and continuous reaction to culture C.vulgaris and remove chemical wastewater (COD). According to the comprehensive experimental results, 50% of glucose carbon source's R. glutinis fermentation wastewater is the most suitable microalgae growth environment. The chemical oxygen demand can be reduced about 10000 mg/L day by batch. In the continuous culture study, the 5-days hydraulic retention time is most suitable for microalgae growth and cell accumulation, culture for 10 days can reduce wastewater chemical oxygen demand 7000 mg/L in 10 days .The next discussion is best condition of scale up 5 times of culture's reaction volume and changes the reaction form. In the batch culture, the chemical oxygen demand in the 50% wastewater can be reduced to 10000 mg /L of COD in 10 days, and the chemical oxygen demand in the wastewater can be reduced by about 14000 mg/L in the HRT 5 days. It is found that the scale up reaction volume and change the reaction form can increase the degree of removing chemical oxygen demand in the wastewater, and the best reaction conditions for the reduction of chemical oxygen demand in the continuous reaction were obtained. The whole systom can maintain algal concentration of about 2.0 g/L, with good chemical oxygen demand removal effect.
Furthermore, in this sustainable cultivation system of aerobic yeast -Rhodotorula glutinis and photosynthetic microalgae -Chlorella vulgaris, a yeast and a microalgae were grown in two separate reactors connected by their gas transportation. The aerobic yeast provides CO2 for the growth of microalgae via photosynthesis process as both carrying out the production of lipids, and efficient CO2 fixation by Chlorella vulgaris. Moreover the aerobic yeast R. glutinis provides 0.142 kg CO2 / Day.g Biomass and C. vulgaris can utilize 1.08 kg CO2/ Day.g Biomass. Microalgae can utilize CO2 of emission gas from the yeast fermenter efficiently up to 35.6 %. It was demonstrated that this sustainable cultivation system of the yeast Rhodotorula glutinis and the autotrophic growth of the microalgae Chlorella vulgaris was successful in the reduction of CO2 emission.

中文摘要 I
Abstract III
第一章 緒論 1
第二章 文獻回顧 2
2.1微藻 2
2.1.1微藻簡介 2
2.1.2小球藻簡介 3
2.1.3微藻培養環境因子 4
2.1.4微藻培養方式 8
2.2環境中六價鉻之特性及汙染 9
2.2.1鉻物化特性 9
2.2.2環境中六價鉻汙染來源 9
2.2.3六價鉻之危害 10
2.2.4法令規定 10
2.3利用微藻移除重金屬 11
2.3.1微藻移除重金屬簡介 11
2.3.2微藻移除重金屬機制 13
2.4利用微藻移除廢水有機物 16
2.4.1 汙水處理概論 16
2.4.2微藻移除廢水簡介 18
2.4.3微藻淨化廢水機制與優點 19
2.5生物反應器串聯培養系統 21
2.5.1生物反應器串聯培養系統簡介 21
2.5.2綠藻固碳應用簡介 22
第三實 驗材料與方法 23
3.1 實驗材料 23
3.1.1 實驗藻種及廢水樣品 23
3.2實驗儀器 27
3.3分析方法 29
3.3.1光照強度測定方法 29
3.3.2藻體濃度測量方法 (吸光值測量藻體濃度) 29
3.3.3 葡萄糖濃度分析方法 29
3.3.4六價鉻濃度分析方法 30
3.3.5鉻價數轉換分析方法(XANES) 30
3.3.6化學需氧量(COD)測量方式 31
3.3.7谷胱甘肽(GSH)測量方式 31
3.3.8綠藻酵素測量方式 32
3.3.9 二氧化碳測量方式 32
3.4實驗方法 33
3.4.1藻種保存及活化 33
3.4.2菌種保存 33
3.4.3接菌 33
3.4.4培養基組成 34
3.4.4.1藻種培養基組成 34
3.5實驗架構 35
3.6實驗培養條件 36
3.6.1批次系統與連續式系統之利用紅酵母上清液對小球藻培養 36
3.6.1.1 500 ml C. vulgaris光合反應器批次發酵程序 36
3.6.1.3 5 LC. vulgaris批次系統與連續式系統光合反應器程序 37
3.6.2微藻C. vulgaris移除Cr(VI) 38
3.6.2.1微藻C. vulgaris還原酵素移除Cr(VI)培養程序 38
3.6.2.2微藻C. vulgaris谷胱甘肽(GSH)移除Cr(VI)培養程序(時間) 39
3.6.2.3微藻C. vulgaris谷胱甘肽(GSH)移除Cr(VI)培養程序(濃度) 39
3.6.3循環共生系統黏紅酵母菌與小球藻之串聯培養 40
3.6.3.1串聯50 L R. glutinis發酵槽及20 L C. vulgaris光合反應器重複饋料批次(Repeated Fed-batch)發酵程序 40
3.7實驗裝置圖 42
3.7.1微藻C. vulgaris移除Cr(VI) 42
3.7.2微藻批次反應培養 43
3.7.3微藻連續式反應培養 44
3.7.4連續式及批次5 L 放大反應與改變反應形式培養 45
3.7.5 20.0氣升式反應器與50 L黏紅酵母發酵槽反應器之串聯設備 46
第四章 結果與討論 48
4.1小球藻移除Cr(VI)探討 48
4.1.1探討小球藻C. vulgaris在利用綠藻酵素下進行生物機制移除Cr(VI)。 49
4.1.2探討小球藻C. vulgaris在利用綠藻藻體內谷胱甘肽(GSH)下進行非生物機制移除Cr(VI)。 51
4.2微藻C. vulgaris降低廢水中化學需氧量(COD) 57
4.2.1測試將綠藻培養於含有粗乾油廢水之實驗效果 58
4.2.2測試將綠藻培養於不含粗乾油廢水之實驗效果 60
4.2.3利用批式反應培養綠藻並去除廢水中化學需氧量探討 62
4.2.4利用連續式反應培養綠藻並去除廢水中化學需氧量探討 65
4.3串聯培養實驗 70
4.3.1循環共生系統黏紅酵母菌與小球藻之串聯培養 70
4.3.2串聯50 L R. glutinis發酵槽及20 L C. vulgaris光合反應器重複饋料批次(Repeated Fed-batch)發酵程序 70
第五章 結論與未來展望 73
5.1結論 73
5.2未來展望 75
參考文獻 76
附錄 81
作者簡歷 85

吳培堯、劉沛宏、許益源、陳怡君、楊致行。台灣土壤及地下水環境保護協會T ASGEP Newsletter第二十二期 第4頁-第8頁, 2007。
陳品妏(2015)。黏紅酵母菌與小球藻之串聯培養與小球藻對於重金屬鉻去除之可行性探討。東海大學化學工程與材料工程所碩士論文。
施金杉(2013)。探討蛇管光合反應器自營培養小球藻與超臨界流體技術轉酯生成生質柴油之研究。東海大學化學工程與材料工程所碩士論文。
陳儷娟(2013)。探討共培養黏紅酵母菌與柵藻對藻體生長與油脂累積之影響。東海大學化學工程與材料工程所碩士論文。
翁煥廷(2014)。廢水處理系統操作問題排除,經濟部工業局環境保護中心質量平衡圖計算分析與操作問題排除講習班講義,共106頁。
陳聖文(2013)。污水處理廠水再生利用應用於基隆地區之可行性研究,經濟部水利署水利規劃試驗所專題報導,共3頁。
張家源(2003)。污水工程-中洲污水處理廠,嘉南藥理科技大學環境工程與科學系上課講義,共43頁。
張怡塘(2009)。環境微生物實驗第五版。高立圖書有限公司。
謝誌鴻、吳文騰(2009)。綠色生質能源。科學發展,433期,36-41。
鄭俊明(2007)。微藻產業。科學發展,415期,34-40。
劉翠玲、許嘉伊(2011)。藻類應用,商機無限;全球水產藻類發展現況與趨勢。全球綠色商機與農業發展趨勢。系列5-9
李光中、劉新校、侯佳慧(2012)。淺談利用微藻固定CO2實現碳減排。桃園縣大學校院產業環保技術服務團,環保簡訊,第16期。
鄒樹平(2007)。微藻的綜合開發利用。水產科學,第26卷,第三期,179-181。
侯嘉龍(2010)。綠色寶藏-綠藻的開發與應用。化工,第57卷,第2期,53-64。
Ai W.,Guo S.,Qin L.,Tang Y.(2008).Development of aground-based space micro-algae photo-bioreactor.Advances in Space Research Vol.41,742-747.
Abdullahi Balarabe Sallau, Hauwa Mairo Inuwa, Sani Ibrahim and Andrew Jonathan Nok.(2014) Isolation and Properties of Chromate Reductase from Aspergillus niger. International Journal of Modern Cellular and Molecular Biology,3(1): 10-21
Bhagwat Prasad Rath,SasmitaDas, Pradeep Kumar Das Mohapatra, Hrudayanath Thatoi. (2014) Optimization of extracellular chromatereductase productionby Bacillus amyloliquefaciens (CSB9)isolated from chromitemine environment. BiocatalysisandAgriculturalBiotechnology335–41.
Changling Li, Hailin Yang, Xiaole Xia , Yuji Li , Luping Chen, Meng Zhang, Ling Zhang,Wu Wanga,(2013). High efficient treatment of citric acid effluent by Chlorella vulgaris and potential biomass utilization. Bioresource Technology 127 248–255.
Chirayu Desai, Kunal Jain, Datta Madamwar(2008). Hexavalent chromate reductase activity in cytosolic fractions of Pseudomonas sp. G1DM21 isolated from Cr(VI) contaminated industrial landfill. Process Biochemistry 713–721.
C.H.ParK,M. Keyhan,Wielinga,S.Fendorg,Matin.(2000). Purification to Homogeneity and Characterization of a Novel Pseudomonas putida Chromate Reductase. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, p. 1788–1795
Daniela Giustarini,Dimitrios Tsikas, Graziano Colombo, Aldo Milzani, Isabella Dalle-Donne, Paolo Fanti, Ranieri Rossi.(2016). Pitfalls in the analysis of the physiological antioxidant glutathione (GSH) and its disulfide (GSSG) in biological samples: An elephant in the room. Journal of Chromatography BVolume 1019, Pages 21–28
Demirbas, A. (2008).Biofuels sources, biofuel policy , biofuel economy and global biofuel projections. Energy Convers Manage,Elsevier.49:2106-2116.
David Dah-Wei Tsai, Paris Honglay Chen, Rameshprabu Ramaraj.(2017). The potential of carbon dioxide capture and sequestration with algae. Ecological Engineering 98-17–23.
Eduardo Bittencourt Sydney, Alessandra Cristine Novak, Julio Cesar de Carvalho, Carlos Ricardo Soccol (2014). Respirometric Balance and Carbon Fixation of Industrially Important (Algae). Biotechnology Division, Federal University of Parana, Curitiba, Brazil. C H A P T E R 4.
Francisco, R., Moreno, A., Vasconcelos Morais, P. (2010). Different physiological responses to chromate and dichromate in the chromium resistant and reducing strain Ochrobactrum tritici 5bvl1. BioMetals, 23, 713-725.
Fares A. AlMomania, Banu Örmecib.(2016) Performance Of Chlorella Vulgaris, Neochloris Oleoabundans, and mixedindigenous microalgae for treatment of primary effluent, secondaryeffluent and centrate. Ecological Engineering 95 - 280–289.
Ghulam Mujtaba, Muhammad Rizwan , Kisay Leea(2016). Removal of nutrients and COD from wastewater using symbiotic co-culture of bacterium Pseudomonas putida and immobilized microalga Chlorella vulgaris. Journal of Industrial and Engineering Chemistry. JIEC 3265 No. of Pages 7
Hala Yassin El-Kassas, Laila Abdelfattah Mohamed.(2014). Bioremediation of the textile waste effluent by Chlorella vulgaris. Egyptian Journal of Aquatic Research , 40, 301–308.
He, Jinsong, Chen, J. Paul. (2014). A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools. Bioresource Technology, 160, 67-78.
Ibrahim, W.M. (2011). Biosorption of heavy metal ions from aqueous solution by red macroalgae. J. Hazard. Mater, 192 (3), 1827–1835.
John Geraldine Sandana Mala1, Dhanasingh Sujatha, Chellan Rose.(2015). Inducible chromate reductase exhibiting extracellular activity inBacillus methylotrophicus for chromium bioremediation. Microbiological Research 170, 235–241.
Kleinubing, S.J., Silva, E.A., Silva, M.G.C., Guibal, E. (2011). Equilibrium of Cu(II) and Ni(II) biosorption by marine alga Sargassum filipendula in a dynamic system: competitiveness and selectivity. Bioresour. Technol, 102 (7), 4610–4617.
K.SureshKumar,Hans-UweDahms,Eun-JiWon,Jae-SeongLee,Kyung-HoonShin.(2015)Microalgae –A promising tool for heavy metal remediation. EcotoxicologyandEnvironmentalSafety113, 329–352.
Luo Y, Guo W, Ngo H.H, Nghiem L.D, Hai F.I, Zhang J, Liang S, Wang X.C. (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ. 473–474.
Morales-Barrera, L. and Cristiani-Urbina, E. (2008). Hexavalent chromium removal by a Trichoderma inhamatum fungal strain isolated from tannery effluent. Water, Air, and Soil Pollution, vol. 187, no. 1–4, 327–336.
Ming-sheng Miao , Xu-dong Yao , Li Shu , Yu-jie Yan , Zhen Wang , Na Li ,Xiao-tong Cui , Ya-min Lin , Qiang Kong.(2016). Mixotrophic growth and biochemical analysis of Chlorella vulgaris cultivated with synthetic domestic wastewater. International Biodeterioration & Biodegradation 113 , 120-125
M. A. Raggi* / R. Mandrioli / E Bugamelli / C. Sabbioni.(1997) Comparison of Analytical Methods for Quality Control of Pharmaceutical Formulations Containing Glutathione. Chromatographia Vol. 46, No. 1/2.
Patterson, J.W., Shugaba, A., Stoneham, MA., Buba, F., Kolo, B.G., Nok, A. J., Ameh, A.D. and Lori, J.A. (2012). Uptake and reduction of hexavalent chromium by Aspergillus niger and Aspergillus parasiticus. Petroleum & Environmental Biotechnology, vol. 3, no. 3, 1–8.
Plaza Cazon, J., Bernardelli, C., Viera, M., Donati, E., Guibal, E. (2012). Zinc and cadmium biosorption by untreated and calcium-treated Macrocystis pyrifera in a batch system. Bioresour. Technol, 116, 195–203.
Qingjie Hou , Haiyan Pei, Wenrong Hua, Liqun Jiang , Ze Yua(2016). Mutual facilitations of food waste treatment, microbial fuel cell bioelectricity generation and Chlorella vulgaris lipid production. Bioresource Technology 203 , 50–55
Romera, E., Gonzalez, F., Ballester, A., Blazquez, M.L., Munoz, J.A. (2007). Comparative study of biosorption of heavy metals using different types of algae. Bioresour. Technol, 98 (17), 3344–3353.
Rai L.C., Gaur, J.P., Kumar, H.D. (1981). Phycology and heavy metal pollution. Biol Rev, 56, 99-151.
Santos, C.A., Ferreira, M.E., Lopes da Silva, T., Gouveia, L., Novais, J.M., Reis, A. (2011). A symbiotic gas exchange between bioreactors enhances microalgal biomass and lipid productivities: taking advantage of complementary nutritional modes. J. Ind. Microbiol. Biotechnol, 38, 909–917.
Santos, C.A., Caldeira, M.L., Lopes, T., Novais, J.M., Reis, A. (2013). Enhanced lipidic algae biomass production using gas transfer from a fermentative Rhodosporidium toruloides culture to an autotrophic Chlorella protothecoides culture. Bioresource Technology, 138, 48–54.
Saidur,R.(2010).Energy, economics and environmental analysis for chillers in office buildings. Energy Educ Sci Technol Part A. 25:1-16
Shugaba, A., Buba, F., Kolo, B. G., Nok, A. J., Ameh, D. A. and Lori, J. A. ( 2012). Uptake and reduction of hexavalent chromium by Aspergillus niger and Aspergillus parasiticus. Petroleum & Environmental Biotechnology, vol. 3, no. 3, pp. 1–8.
Shi, W., Becker, J., Bischoff, M., Turco, RF., Konopka, AE. (2002). Association of microbial community composition and activity with lead, chromium, and hydrocarbon contamination. Applied and Environmental Microbiology, 68, 3859–3866.
Vajpayee, P., Sharma, SC., Tripathi, RD., Rai, UN., Yunus, M. (1999). Bioaccumulation of chromium and toxicity to photosynthetic pigments, nitrate reductase activity and protein content of Nelumbo nucifera Gaertn. Chemosphere, 39, 2159–2169.
Valls, M., Atrian, S., Lorenzo, V. and Fern´and ez, L.A. (2000). Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nature Biotechnology, vol. 18, no. 6, 661–665.
Xiaochen Ma, Hongli Zheng, Min Addy, Erik Anderson, Yuhuan Liu, Paul Chen, Roger Ruan.(2016). Cultivation of Chlorella vulgaris in wastewater with waste glycerol:Strategies for improving nutrients removal and enhancing lipidproduction. Bioresource Technology 207, 252–261.
Xu L, Luo M, Li W, Wei X, Xie K, Liu L, Jiang C, Liu H. (2011). Reduction of hexavalent chromium by Pannonibacter phragmitetus LSSE-09 stimulated with external electron donors under alkaline conditions. Journal of Hazardous Materials, 185, 1169-1176.
Yue Wang , Shih-Hsin Ho.(2016). Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresource Technology 222, 485–497
Yue Wang , Wanqian Guo, Hong-Wei Yen, Shih-Hsin Ho, Yung-Chung Lo, Chieh-Lun Cheng ,Nanqi Ren, Jo-Shu Chang(2015). Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Bioresource Technology 198, 619–625.
Zheng, Y.M., Liu, T., Jiang, J.W., Yang, L., Fan, Y.P., Wee, A.T.S., Chen, J.P. (2011). Characterization of hexavalent chromium interaction with Sargassum by X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy and quantum chemistry calculation. J. Colloid Interface Sci, 356 (2), 741–748.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊