跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 01:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林揚傑
研究生(外文):Lin, Yang-Jie
論文名稱:NURBS曲線插值器應用於選擇性雷射燒結電路
論文名稱(外文):Non-Uniform Rational B-spline Curve Interpolator Apply to Selective Laser Sintering Electrical Circuits
指導教授:鄭中緯
指導教授(外文):Cheng, Chung-Wei
口試委員:洪景華陳仁浩鄭中緯
口試委員(外文):Hung, Chin-HuaChen, Ren-HawCheng, Chung-Wei
口試日期:2016-09-06
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:51
中文關鍵詞:選擇性雷射燒結NURBS奈米銀軟性基板
外文關鍵詞:Selective Laser SinteringNURBSSilver NanoparticlesFlexible Substrate
相關次數:
  • 被引用被引用:1
  • 點閱點閱:333
  • 評分評分:
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:0
本論文是以NURBS曲線插值器結合選擇性雷射燒結系統,並於奈米銀溶液塗佈的PET軟性基板上進行雷射燒結。研究中利用雷射減少基材的破壞,可在較低之雷射功率下有效燒結奈米銀粒子。為確保奈米銀經燒結後可做為後續導線使用,實驗中透過設計雷射功率100~250 mW(每50 mW遞增)與雷射掃描速2~5 mm/s(每1 mm/s遞增),取其導電性最佳之數據做為後續NURBS範例之使用。為了彰顯NURBS曲線插值器是否能有效改善雷射掃描速度連續性,以蝴蝶狀的NURBS曲線插值分析XY雙軸運動平台軌跡。燒結後,將研究中的G06 NURBS曲線插值與G01線性插值在轉彎處比較線寬的變化結果。最後以平面螺旋式電感做為其應用展示。
In this thesis, we developed a selective laser sintering (SLS) system with NURBS curve interpolator, and sintering the silver nanoparticles ink on a flexible substrate. Take advantage of laser for reducing thermal damage of substrate, which allow us to use lower laser power to sinter the silver nanoparticles ink. To ensure that sintered silver nanoparticles can be used for conductive line, the experiment are designed for laser power in the range of 100 ~250 mW and the scanning speed in the range of 2~5 mm/s. The best electrical conductivity of the experiment result is used in the following experiment. In order to show if NURBS interpolator can effectively improve the continuity of laser scanning speed, by using a butterfly-shaped of NURBS curve as example to analyze the path of the motion stage. After sintering, traditional method (G01) with purposed method (G06) for the change rate of linewidth in the corner of the path are compared. At last, a planar spiral inductance for application is demonstrated.
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第1章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 4
1.3 內容大綱 10
第2章 NURBS曲線與插值器 11
2.1 NURBS數學模型及特性描述 11
2.2 NURBS插值器之實現 14
第3章 奈米材料與雷射光材用機制 16
3.1 奈米銀基本特性 16
3.2 奈米材料燒結成型機制 18
第4章 實驗系統 20
4.1 實驗架構 20
4.2 實驗設備與儀器規格 21
4.2.1 量測儀器 22
4.3 雷射光路系統 24
4.3.1 DPSS雷射 26
4.3.2 光型量測 27
4.4 XY雙軸運動平台 30
4.5 奈米銀試片製備 31
第5章 實驗結果與討論 32
5.1 雷射燒結參數實驗 33
5.1.1 基本單線燒結 34
5.1.2 單線電性量測 36
5.1.3 文獻比較 37
5.2 NURBS曲線燒結實驗 39
5.2.1 運動與誤差分析 41
5.2.2 NURBS參數曲線插值與線性插值 45
5.2.3 NURBS電路燒結 47
第6章 結論與未來展望 48
6.1 結論 48
6.2 未來展望 48
參考文獻 49

[1] Ko, S. H., Pan, H., Grigoropoulos, C. P., Luscombe, C. K., Fréchet, J. M. J., and Poulikakos, D., 2007, "All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles," Nanotechnology, 18(34), p. 345202.
[2] Sele, C. W., von Werne, T., Friend, R. H., and Sirringhaus, H., 2005, "Lithography‐free, self‐aligned inkjet Printing with sub‐hundred‐nanometer resolution," Advanced Materials, 17(8), pp. 997-1001.
[3] Piqué, A., Chrisey, D., Fitz-Gerald, J., McGill, R., Auyeung, R., Wu, H., Lakeou, S., Nguyen, V., Chung, R., and Duignan, M., 2000, "Direct writing of electronic and sensor materials using a laser transfer technique," Journal of Materials Research, 15(09), pp. 1872-1875.
[4] Adams, J. J., Duoss, E. B., Malkowski, T. F., Motala, M. J., Ahn, B. Y., Nuzzo, R. G., Bernhard, J. T., and Lewis, J. A., 2011, "Conformal printing of electrically small antennas on three‐dimensional surfaces," Advanced Materials, 23(11), pp. 1335-1340.
[5] Zenou, M., Ermak, O., Saar, A., and Kotler, Z., 2013, "Laser sintering of copper nanoparticles," Journal of Physics D: Applied Physics, 47(2), p. 25501.
[6] 鄭中緯,「運動控制器之即時NURBS曲線及曲面插值器設計與實現」,國立成功大學,博士論文,2003年。
[7] Lee, A. C., Lin, M. T., Pan, Y. R., and Lin, W. Y., 2011, "The feedrate scheduling of NURBS interpolator for CNC machine tools," Computer-Aided Design, 43(6), pp. 612-628.
[8] Yoon, K., Kim, K., and Lee, J., 2015, "Development of a path generation algorithm for large-area laser patterning using a manual-input control-point," Journal of Laser Micro Nanoengineering, 10(2), p. 234.
[9] Yeo, J., Hong, S., Lee, D., Hotz, N., Lee, M. T., Grigoropoulos, C. P., and Ko, S. H., 2012, "Next generation non-vacuum, maskless, low temperature nanoparticle ink laser digital direct metal patterning for a large area flexible electronics," PloS one, 7(8), p. e42315.
[10] Son, Y., Yeo, J., Moon, H., Lim, T. W., Hong, S., Nam, K. H., Yoo, S., Grigoropoulos, C. P., Yang, D. Y., and Ko, S. H., 2011, "Nanoscale electronics: digital fabrication by direct femtosecond laser processing of metal nanoparticles," Advanced Materials, 23(28), pp. 3176-3181.
[11] Paeng, D., Yeo, J., Lee, D., Moon, S. J., and Grigoropoulos, C. P., 2015, "Laser wavelength effect on laser-induced photo-thermal sintering of silver nanoparticles," Applied Physics A, 120(4), pp. 1229-1240.
[12] Yoon, Y. H., Yi, S. M., Yim, J. R., Lee, J. H., Rozgonyi, G., and Joo, Y. C., 2010, "Microstructure and electrical properties of high power laser thermal annealing on inkjet-printed Ag films," Microelectronic Engineering, 87(11), pp. 2230-2233.
[13] Shpitalni, M., Koren, Y., and Lo, C., 1994, "Realtime curve interpolators," Computer-Aided Design, 26(11), pp. 832-838.
[14] Koren, Y., Lo, C., and Shpitalni, M., 1993, "CNC interpolators: algorithms and analysis," (63), pp. 83-92.
[15] Tsai, M. C., and Cheng, C. W., 2003, "A real-time predictor-corrector interpolator for CNC machining," Journal of Manufacturing Science and Engineering, 125(3), pp. 449-460.
[16] Piegl, L., 1991, "On NURBS: a survey," IEEE Computer Graphics and Applications, 11(1), pp. 55-71.
[17] Cheng, C. W., and Tsai, M. C., 2004, "Real-time variable feed rate NURBS curve interpolator for CNC machining," The International Journal of Advanced Manufacturing Technology, 23(11-12), pp. 865-873.
[18] Anand, V. B., 1996, Computer graphics and geometric modeling for engineers, John Wiley & Sons, Inc.
[19] Link, S., and El Sayed, M. A., 1999, "Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods," The Journal of Physical Chemistry B, 103(40), pp. 8410-8426.
[20] Bastús, N. G., Piella, J., and Puntes, V., 2015, "Quantifying the sensitivity of multipolar (dipolar, quadrupolar, and octapolar) surface plasmon resonances in silver nanoparticles: The effect of size, composition, and surface coating," Langmuir, 32(1), pp. 290-300.
[21] Paeng, D., Lee, D., and Grigoropoulos, C. P., 2014, "Characteristic time scales of coalescence of silver nanocomposite and nanoparticle films induced by continuous wave laser irradiation," Applied Physics Letters, 105(7), p. 073110.
[22] "Mounted zero-order half-wave plates," https://www.thorlabs.hk/newgrouppage9.cfm?objectgroup_id=711.
[23] "Broadband polarizing beamsplitter cubes," https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=739.
[24] 鄭中緯,李明修,李炫璋,曾文鵬,2004年,「串列式運動控制網路SSCNET之即時實現」,機械月刊,30卷(12期總號353),頁60-69。
[25] 鄭中緯,楊信生,曾介亭,曾文鵬,2005年,「PC-Based運動控制網路控制器之研究」,機械月刊,(263期),頁173-185。
[26] Mohan, S. S., del Mar Hershenson, M., Boyd, S. P., and Lee, T. H., 1999, "Simple accurate expressions for planar spiral inductances," IEEE Journal of solid-state circuits, 34(10), pp. 1419-1424.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top