跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 20:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林士凱
研究生(外文):LIN, SHIH-KAI
論文名稱:浚港底泥添加轉爐石燒結骨材特性之研究
論文名稱(外文):Properties of lightweight aggregate produced by sintering of dredged harbor sediment and steel slag
指導教授:董正釱
指導教授(外文):DONG, CHENG-DI
口試委員:董正釱陳秋妏黃金寶施育仁洪彰懋
口試委員(外文):DONG, CHENG-DICHEN, CHIU-WENHUANG, CHIN-PAOSHIH, YU-JENHUNG, CHANG-MAO
口試日期:2019-06-13
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:海洋環境工程系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:116
中文關鍵詞:港區浚泥轉爐石輕質骨材廢玻璃
外文關鍵詞:harbor sedimentsteel slaglightweight aggregatewaste glass
相關次數:
  • 被引用被引用:3
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用港區浚泥與轉爐石製備輕質骨材。並以預熱/燒結處理探討吸水率與乾(濕)顆粒密度的變化,和探討轉爐石與廢玻璃添加對輕質骨材製成的影響以得到最佳操作參數,再以基本性質、微觀結構、水合回脹、氯離子溶出、序列萃取、有毒重金屬溶出特性及成本評估,探討其燒結特徵和可再利用性。
結果顯示,預熱處理可幫助獲得最佳化的輕質骨材。在特定燒結溫度下(1150℃以上)可顯著下降濕顆粒密度與吸水率並提升骨材的強度,此外,乾顆粒密度會與燃燒收縮率成正相關。而添加轉爐石可增加樣品的熔融效果,但轉爐石過量則會減少骨材氧化矽與氧化鋁含量(玻璃相)。另外,轉爐石的高燒失率會導致乾顆粒密度隨轉爐石增加而降低。而添加廢玻璃可在高溫下形成流動相,增加試體顆粒與顆粒間的接觸以幫助熔融,但廢玻璃過量會造成大孔隙的增加。最後,透過港區浚泥混拌轉爐石燒製輕質骨材可維持輕質混凝土適用的鹼度,並有效的抑制氯離子溶出與回脹問題,也能穩定化重金屬,使骨材的有毒重金屬溶出特性均遠低於法規標準,以致於在應用上不會造成二次污染之疑慮。
本研究使用港區浚泥:轉爐石:廢玻璃(weight ratio)= 10 : 4 : 1的配比,經10 ℃ /min升溫至500℃ 並持溫10分鐘,再以15 ℃ /min升溫至1175 ℃ 並持溫15分鐘進行燒製,可生產低吸水性輕質骨材,其乾顆粒密度為1.878 g/cm3,吸水率為3.5%,強度為236 kgf/cm2。

In this study, a lightweight aggregate (LWA) was prepared using dredged harbor sediment and basic oxygen furnace slag (BOFS). The effects of preheating, sintering and BOFS addition on the production of LWA were discussed in terms of water absorption, wet and dry particle density. Also, characteristics and usability of LWA were discussed in terms of basic properties, compressive strength, microscopic structure, hydration swelling, sequential extraction, chloride ion elution, toxic metals leachability, and cost evaluation.
The results show that preheating treatment can help to obtain optimized lightweight aggregates. An effective sintering temperature (1150 ℃ or more) leads to cause the wet particle density and water absorption decreasing and the compressive strength increases. In addition, the dry particle density is positively correlated with the shrinkage. Proper addition of BOFS can improve sintering and vitrification, but excessive addition of BOFS results in the lack of SiO2 and Al2O3 (glass phase) in the aggregate. In addition, the dry particle density shows a decrease with the addition of BOFS as a result of the high loss on ignition of BOFS. A small amount of waste glass can effectively increase the contact between the raw material particles, leading to improve sintering and vitrification, but excessive addition of waste glass can cause an increase in the pores of the aggregate. Considering the environmental compatibility of engineering reuse, the pH of the aggregate can be lowered through the mixed BOFS in the dredged harbor sediment while keeping the pH suitable for lightweight concrete. Moreover, high- temperature sintering can effectively decrease in chloride ion elution and hydration swelling. And also, heavy metals contents (Cd, Cr, Cu, Pb, Ni, Zn) extracted by toxicity characteristic leaching procedure (TCLP) all compliant with the regulatory standards, thus making it suitable for civil engineering.
According to the results of this study, adding BOFS and waste glass into dredged harbor sediment then sintering to be LWA is feasible, and the LWA made in this study are dry particle density of 1.878 g cm-3, water absorption as low as 3.5 % and compressive strength up to 236 kgf cm-2.

目錄
中文摘要 I
Abstract II
圖目錄 VII
表目錄 IX
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 港區浚泥應用與現況 3
2.1.1 港區浚泥來源與特性 3
2.1.2 港區浚泥於國內外再利用之研究 5
2.2 轉爐石應用與現況 6
2.2.1 轉爐石來源與特性 6
2.2.2 轉爐石於國內外再利用之研究 7
2.3 輕質骨材應用與現況 9
2.3.1 輕質骨材之簡介 10
2.3.2 輕質骨材特性與應用 11
2.3.3 製造輕質骨材的影響因子 12
2.3.4 製造輕質骨材的影響機制 18
2.3.5 輕質骨材於國內外之研究 21
第三章 實驗方法與儀器 23
3.1 研究架構 23
3.2 藥品與設備 25
3.2.1 實驗藥品 25
3.2.2 實驗設備及儀器 26
3.3 材料來源 28
3.3.1 港區浚泥 28
3.3.2 轉爐石渣 28
3.3.3 廢玻璃 28
3.4 試體製備與燒製過程 29
3.5 實驗方法及步驟 31
第四章 結果與討論 38
4.1 材料基礎物理化學性質 38
4.1.1 粒徑大小 38
4.1.2 成分組成與表觀分析 42
4.1.3 熱重/熱差分析 48
4.1.4 結晶成分分析 52
4.2 預熱處理特性 54
4.3 燒結處理特性 57
4.3.1 吸水率與乾濕顆粒密度 57
4.3.2 抗壓強度 63
4.3.3 表觀分析 65
4.3.4 結晶成分分析 68
4.4 添加不同比例轉爐石之特性 71
4.4.1 吸水率與乾濕顆粒密度 71
4.4.2 抗壓強度 75
4.4.3 表觀分析 76
4.5 添加不同比例廢玻璃之特性 79
4.5.1 吸水率與乾濕顆粒密度 79
4.5.2 抗壓強度 83
4.5.3 表觀分析 84
4.6 再利用可行性之研究 87
4.6.1 氫離子濃度測試 87
4.6.2 氯離子溶出試驗 89
4.6.3 水合回脹度 90
4.6.4 多次事業廢棄物毒性溶出試驗程序 91
4.6.5 序列萃取 93
4.6.6 高雄港不同區域港區浚泥燒製輕質骨材評估 98
4.6.7 成本估算與減碳效應 102
第五章 結論與建議 103
5.1結論 103
5.2建議 104
參考文獻 105


Ahmad, J., Tariq, M. I., Ahmad, R., Mehmood, M., Khan, A. F., Waseem, S., Tanvir, M. T., 2018. Formation of porous α-alumina from ammonium aluminum carbonate hydroxide whiskers. Ceramics International, 45(4), 4645-4652.
Ayari, F., Srasra, E., Trabelsi-Ayadi, M., 2005. Characterization of bentonitic clays and their use as adsorbent. Desalination, 185(1-3), 391-397.
Ayati, B., Ferrándiz-Mas, V., Newport, D., Cheeseman, C., 2018. Use of clay in the manufacture of lightweight aggregate. Construction and Building Materials, 162, 124-131.
Ayati, B., Molineux, C., Newport, D., Cheeseman, C., 2019. Manufacture and performance of lightweight aggregate from waste drill cuttings. Journal of Cleaner Production, 208, 252-260.
Babaee, M., Castel, A., 2018. Chloride diffusivity, chloride threshold, and corrosion initiation in reinforced alkali-activated mortars: Role of calcium, alkali, and silicate content. Cement and Concrete Research, 111, 56-71.
Bernhardt, M., Tellesbø, H., Justnes, H., Wiik, K., 2014. The effect of heat treatment and cooling rate on the properties of lightweight aggregates. Journal of the European Ceramic Society, 34(5), 1353-1363.
BSI., 2002. BS EN 13055-1: Lightweight aggregates. Lightweight aggregates for concrete, mortar and grout.
Buol, S. W., Southard, R. J., Graham, R. C., McDaniel, P. A., 2011. Soil Genesis and Classification. John Wiley & Sons.
Carvalho, S. Z., Vernilli, F., Almeida, B., Demarco, M., Silva, S. N., 2017. The recycling effect of BOF slag in the portland cement properties. Resources, Conservation and Recycling, 127, 216-220.
Chandra, N., Agnihotri, N., Bhasin, S. K., 2004. Sintering characteristics of talc in the presence of phosphatic and alkali carbonate sintering activators. Ceramics International, 30(5), 643-652.
Chang, F. C., Lo, S. L., Lee, M. Y., Ko, C. H., Lin, J. D., Huang, S. C., Wang, C. F., 2007. Leachability of metals from sludge-based artificial lightweight aggregate. Journal of Hazardous Materials, 146(1-2), 98-105.
Cheeseman, C. R., Virdi, G. S., 2005. Properties and microstructure of lightweight aggregate produced from sintered sewage sludge ash. Resources, Conservation and Recycling, 45(1), 18-30.
Chen, C. F., Chen, C. W., Ju, Y. R., Kao, C. M., Dong, C. D., 2018. Impact of disposal of dredged material on sediment quality in the Kaohsiung Ocean Dredged Material Disposal Site, Taiwan. Chemosphere, 191, 555-565.
Chen, C. W., Kao, C. M., Chen, C. F., Dong, C. D., 2007. Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere, 66(8), 1431-1440.
Cougny, G., 1990. Spécifications sur les matières premières argileuses pour la fabrication de granulats légers expansés. Bulletin of the International Association of Engineering Geology-Bulletin de l'Association Internationale de Géologie de l'Ingénieur, 41(1), 47-55.
Dondi, M., Cappelletti, P., D’Amore, M., de Gennaro, R., Graziano, S. F., Langella, A., Zanelli, C., 2016. Lightweight aggregates from waste materials: Reappraisal of expansion behavior and prediction schemes for bloating. Construction and Building Materials, 127, 394-409.
Ducman, V., Mladenovič, A., Šuput, J. S., 2002. Lightweight aggregate based on waste glass and its alkali–silica reactivity. Cement and Concrete Research, 32(2), 223-226.
Ghorab, H. Y., Zahran, F. S., Kamal, M., Meawad, A. S., 2018. On the durability of Portland limestone cement: Effect of pH on the thaumasite formation. HBRC Journal, 14(3), 340-344.
Gibbs, R. J., Matthews, M. D., Link, D. A., 1971. The relationship between sphere size and settling velocity. Journal of Sedimentary Research, 41(1), 7-18.
González-Corrochano, B., Alonso-Azcárate, J., Rodas, M., 2012. Chemical partitioning in lightweight aggregates manufactured from washing aggregate sludge, fly ash and used motor oil. Journal of Environmental Management, 109, 43-53.
González-Corrochano, B., Alonso-Azcárate, J., Rodríguez, L., Lorenzo, A. P., Torío, M. F., Ramos, J. J. T., Muro, C., 2016. Valorization of washing aggregate sludge and sewage sludge for lightweight aggregates production. Construction and Building Materials, 116, 252-262.
Hamer, K., Karius, V., 2002. Brick production with dredged harbour sediments. An industrial-scale experiment. Waste Management, 22(5), 521-530.
Han, K. B., Graser, J., Robert, C. J., de Mendonca Filho, L. M., McLennan, J., Sparks, T. D., 2018. Synthesis and microstructural evolution in iron oxide kaolinite based proppant as a function of reducing atmosphere, sintering conditions, and composition. Ceramics International, 44(8), 9976-9983.
JIS A5015, 1992, Iron and Steel Slag for Road Construction, Japanese Industrial Standards Committee.
Kim, J. H., Kim, J. S., Han, S. H., Kang, H. W., Lee, H. G., Cheon, C. I., 2016. (K, Na) NbO3-based ceramics with excess alkali oxide for piezoelectric energy harvester. Ceramics International, 42(4), 5226-5230.
Kuo, W. T., Shu, C. Y., 2014. Application of high-temperature rapid catalytic technology to forecast the volumetric stability behavior of containing steel slag mixtures. Construction and Building Materials, 50, 463-470.
Ledesma, E. F., Lozano-Lunar, A., Ayuso, J., Galvín, A. P., Fernández, J. M., Jiménez, J. R., 2018. The role of pH on leaching of heavy metals and chlorides from electric arc furnace dust in cement-based mortars. Construction and Building Materials, 183, 365-375.
Li, H., Xi, X., Ma, J., Hua, K., Shui, A., 2017. Low-temperature sintering of coarse alumina powder compact with sufficient mechanical strength. Ceramics International, 43(6), 5108-5114.
Li, Q., Ding, H., Rahman, A., He, D., 2016. Evaluation of Basic Oxygen Furnace (BOF) material into slag-based asphalt concrete to be used in railway substructure. Construction and Building Materials, 115, 593-601.
Lian, F., Ma, L., Chou, K., 2017. Industrial research on the high-temperature modification of Basic Oxygen Furnace slag with solid waste compound. Journal of Cleaner Production, 143, 549-556.
Lim, Y. C., Lin, S. K., Ju, Y. R., Wu, C. H., Lin, Y. L., Chen, C. W., Dong, C. D, 2019. Reutilization of dredged harbor sediment and steel slag by sintering as lightweight aggregate. Process Safety and Environmental Protection, 126, 287-296.
Liu, M., Liu, X., Wang, W., Guo, J., Zhang, L., Zhang, H., 2018. Effect of SiO2 and Al2O3 on characteristics of lightweight aggregate made from sewage sludge and river sediment. Ceramics International, 44(4), 4313-4319.
Liu, S., Guan, X., Zhang, S., Dou, Z., Feng, C., Zhang, H., Luo, S., 2017. Sintered bayer red mud based ceramic bricks: Microstructure evolution and alkalis immobilization mechanism. Ceramics International, 43(15), 13004-13008.
Martínez, J. D., Betancourt-Parra, S., Carvajal-Marín, I., Betancur-Vélez, M., 2018. Ceramic light-weight aggregates production from petrochemical wastes and carbonates (NaHCO3 and CaCO3) as expansion agents. Construction and Building Materials, 180, 124-133.
Merhaby, D., Ouddane, B., Net, S., Halwani, J., 2018. Assessment of trace metals contamination in surficial sediments along Lebanese Coastal Zone. Marine Pollution Bulletin, 133, 881-890.
Molisani, A. L., Goldenstein, H., Yoshimura, H. N., 2017. The role of CaO additive on sintering of aluminum nitride ceramics. Ceramics International, 43(18), 16972-16979.
Nowok, J. W., Benson, S. A., Jones, M. L., Kalmanovitch, D. P., 1990. Sintering behaviour and strength development in various coal ashes. Fuel, 69(8), 1020-1028.
Nowok, J. W., Benson, S. A., Steadman, E. N., Brekke, D. W., 1993. The effect of surface tension/viscosity ratio of melts on the sintering propensity of amorphous coal ash slags. Fuel, 72(7), 1055-1061.
Osio-Norgaard, J., Gevaudan, J. P., Srubar III, W. V., 2018. A review of chloride transport in alkali-activated cement paste, mortar, and concrete. Construction and Building Materials, 186, 191-206.
Qi, Y., Yue, Q., Han, S., Yue, M., Gao, B., Yu, H., Shao, T., 2010. Preparation and mechanism of ultra-lightweight ceramics produced from sewage sludge. Journal of Hazardous Materials, 176(1-3), 76-84.
Riley, C. M., 1951. Relation of chemical properties to the bloating of clays. Journal of the American Ceramic Society, 34(4), 121-128.
Setién, J., Hernández, D., González, J. J., 2009. Characterization of ladle furnace basic slag for use as a construction material. Construction and Building Materials, 23(5), 1788-1794.
Tajra, F., Elrahman, M. A., Chung, S. Y., Stephan, D., 2018. Performance assessment of core-shell structured lightweight aggregate produced by cold bonding pelletization process. Construction and Building Materials, 179, 220-231.
Tessier, A., Campbell, P. G., Bisson, M., 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844-851.
Wang, L., Chen, L., Tsang, D. C., Li, J. S., Yeung, T. L., Ding, S., Poon, C. S., 2018. Green remediation of contaminated sediment by stabilization/solidification with industrial by-products and CO2 utilization. Science of The Total Environment, 631, 1321-1327.
Wang, Q., Wang, N., Ding, Z. Y., Wu, T. J., 2013. Influences of firing process system on foam glass properties. In Advanced Materials Research. Trans Tech Publications, 721, 258-261.
Wei, Y. L., Cheng, S. H., Ko, G. W., 2016. Effect of waste glass addition on lightweight aggregates prepared from F-class coal fly ash. Construction and Building Materials, 112, 773-782.
Wei, Y. L., Cheng, S. H., Ou, K. T., Kuo, P. J., Chung, T. H., Xie, X. Q.,2017. Effect of calcium compounds on lightweight aggregates prepared by firing a mixture of coal fly ash and waste glass. Ceramics International, 43(17), 15573-15579.
Wei, Y. L., Kuo, P. J., Yin, Y. Z., Huang, Y. T., Chung, T. H., Xie, X. Q., 2018. Co-sintering oyster shell with hazardous steel fly ash and harbor sediment into construction materials. Construction and Building Materials, 172, 224-232.
Wei, Y. L., Lin, C. Y., Cheng, S. H., Wang, H. P., 2014. Recycling steel-manufacturing slag and harbor sediment into construction materials. Journal of Hazardous Materials, 265, 253-260.
Wei, Y. L., Lin, C. Y., Ko, K. W., Wang, H. P., 2011. Preparation of low water-sorption lightweight aggregates from harbor sediment added with waste glass. Marine Pollution Bulletin, 63(5-12), 135-140
Wei, Y. L., Yang, J. C., Lin, Y. Y., Chuang, S. Y., Wang, H. P., 2008. Recycling of harbor sediment as lightweight aggregate. Marine Pollution Bulletin, 57(6-12), 867-872.
World Steel Association, 2018. World Steel in Figures.
Xue, P., Xu, A., He, D., Yang, Q., Liu, G., Engström, F., Björkman, B., 2016. Research on the sintering process and characteristics of belite sulphoaluminate cement produced by BOF slag. Construction and Building Materials, 122, 567-576.
Yuan, X., Huang, H., Zeng, G., Li, H., Wang, J., Zhou, C., Liu, Z., 2011. Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge. Bioresource Technology, 102(5), 4104-4110.
Yue, M., Yue, Q. Y., Qi, Y. F., 2011. Effect of sintering temperature on the properties of sludge ceramics and fly-ash ceramics. In Advanced Materials Research. Trans Tech Publications, 150, 1068-1072.
Zhang, S., Liu, L., Tan, K., Zhang, L., Tang, K., 2015. Influence of burning temperature and cooling methods on strength of high carbon ferrochrome slag lightweight aggregate. Construction and Building Materials, 93, 1180-1187.
Zhang, Y. M., Jia, L. T., Mei, H., Cui, Q., Zhang, P. G., Sun, Z. M., 2016. Fabrication, microstructure and properties of bricks fired from lake sediment, cinder and sewage sludge. Construction and Building Materials, 121, 154-160.
Zhao, Y., Gao, J., Chen, F., Liu, C., Chen, X., 2018. Utilization of waste clay bricks as coarse and fine aggregates for the preparation of lightweight aggregate concrete. Journal of Cleaner Production, 201, 706-715.
中華民國行政院環境保護署,2005年,事業廢棄物毒性特性溶出程序(NIEA R201.15C)
中華民國行政院環境保護署,2008年,廢棄物之氫離子濃度指數(pH值)測定方法-電極法(NIEA R208.04C)
中華民國行政院環境保護署,2012年,火焰式原子吸收光譜法(NIEA M111.01C)
中華民國行政院環境保護署,2015年,微波輔助消化法(NIEA M301.00B)
中華民國行政院環境保護署,減量線製備與查核指引(NIEA-PA103)
中華民國行政院環境保護署,環境檢驗品質管制指引通則(NIEA-PA102)
中華民國經濟部標準檢驗局,2014年,粗粒料密度、相對密度(比重)及吸水率試驗法(CNS 488 A3007)
中華民國經濟部標準檢驗局,2014年,細粒料中水溶性氯離子含量試驗法(CNS 13407 A3342)
中聯資源股份有限公司,2017年企業責任報告書
中聯資源股份有限公司,2017年轉爐石海事工程
中聯資源股份有限公司,各種爐石成份比較表
台灣港務股份有限公司,2017年企業責任報告書
台灣港務股份有限公司,2017年港區疏浚底泥再利用試驗評估計畫期末報告
沈得縣、曾士芳、沈美毅、李承效,2011,轉爐石裹漿應用於密級配瀝青混凝土鋪面之研究,鋪面工程,9卷4期,第31-40頁
林益璇,2011,煉鋼轉爐石游離石灰加速安定化之研究,國立高雄應用科技大學化學工程與材料工程系研究所,碩士論文
林澤佑,2013,底泥添加黃酸對灌溉水體及底泥重金屬有效性影響之研究,朝陽科技大學環境工程與管理系,碩士論文.
邱永芳、謝明志、林雅雯、曾文傑、黃然、張建智、葉為忠、梁明德、翁在龍、黃進國、羅冠顯、陳家隆,2011,RC橋梁材料耐久性評估與殘餘壽命預測之研究,交通部運輸研究所
施維禮,2010,添加助溶劑於淨水廠污泥燒製輕質骨材,東海大學環境科學與工程系研究所,碩士論文
胡紹華、胡慎知、傅彥培,2011,下水污泥添加H3BO3以低溫共燒技術燒製輕質骨材之特性研究,鑛冶,中國鑛冶工程學會會刊,63卷4期,第19-27頁
張家碩,2005,水庫淤泥燒製輕質骨材的燒結行為之研究,國立成功大學資源工程學系研究所,碩士論文
許伯良,2011,轉爐石產製與工程應用,轉爐石應用於瀝青混凝土鋪面研討會
許炫堯,2017,利用酸洗去除港區沉積物重金屬之研究,國立高雄海洋科技大學海洋環境工程研究所,碩士論文
陳桂清,2002,港灣R.C.構造物腐蝕檢測與防蝕原理,鋼筋混凝土構造物防蝕技術與應用研討會
陳豪吉,2010,輕質骨材混凝土之發展與應用,授課資料
黃志彬、李公哲,2001,淨水污泥與水庫淤泥燒結資源化之利用-污泥性質與燒結條件對燒結體之影響 (II),行政院國家科學委員會補助專題研究計畫進度報告
葉為忠,2010,既有RC結構物鋼筋腐蝕量測技術及評估準則之研究,內政部建築研究所委託研究報告

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊