跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 09:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝宗成
研究生(外文):Hsieh, Tsung-Cheng
論文名稱:應用熔射覆膜技術於摩阻型螺栓接合之滑移係數探討
論文名稱(外文):Evaluation of Slip Coefficient of Bolted Slip-Critical Connections with Thermal Sprayed Coating
指導教授:陳誠直
指導教授(外文):Chen, Cheng-Chih
口試委員:陳誠直涂耀賢陳垂欣
口試委員(外文):Chen, Cheng-ChihTu, Yaw-ShenChen, Chui-Hsin
口試日期:2017-07-06
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:79
中文關鍵詞:熔射覆膜滑移係數螺栓夾緊力粗糙度抗滑力
外文關鍵詞:Thermal sprayCoatingSlip coefficientBoltClamping forceRoughnessSlip resistance
相關次數:
  • 被引用被引用:3
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:1
本研究旨在提升摩阻型螺栓接合之滑移係數,以熔射覆膜技術於鋼板摩擦面覆膜,使接合於滿足設計作用力時,螺栓數量與接合尺寸得以縮減。依照相關規範之滑移實驗方法設計試體,探討熔射覆膜材料、覆膜厚度、鋼板材質、螺栓種類與鋼板表面粗糙度對滑移係數之影響。實驗結果顯示連接板摩擦面以鋁鎂合金熔射覆膜處理可將滑移係數提升達0.81至1.04,平均可達0.91,為連接板未塗裝之滑移係數0.71之1.3倍。覆膜材料採用鋁鎂合金之滑移係數相較於採用純鋁更為穩定,而覆膜厚度由150 μm提升至450 μm會使鋁鎂合金覆膜之滑移係數降低11.1%,使純鋁覆膜之滑移係數降低12.9%。鋼板材質採用SM570MB相較於採用SN490B,因材質差異造成噴砂及熔射覆膜效果不同,使接合滑動摩擦行為較不穩定,但對滑移係數影響不顯著。接合若以F14T超高強度螺栓取代F10T高強度螺栓,抗滑強度可有相對應的提升,但於滑移係數則無顯著的影響。鋼板表面粗糙度影響鋼材與熔射塗層之鍵結強度,將表面粗糙度由7.1 μm提升至12.8 μm可使滑移係數略為提升。應用鋁鎂合金熔射覆膜技術於摩阻型螺栓接合時,建議滑移係數採用0.70,為規範中鋼板去除黑皮未塗裝表面之滑移係數0.33的2倍以上,可避免抗滑力喪失使接合滑移時,螺栓立即被剪斷之狀況;同時可減少接合螺栓數量與連接板尺寸皆50%以上,達到節省材料並降低施工費用及時間之目的。
The objective of this study is to increase the slip coefficient of bolted slip-critical connections by applying a thermal sprayed coating on faying surfaces, and further to reduce the number of bolts and connection’s dimension while satisfying the design force. The specimens were designed according to related specifications. The effects of the coating material, coating thickness, steel material, bolt type, and surface roughness of the steel plate on the slip coefficient were evaluated. The test results showed that the slip coefficients of the connection by thermal spraying aluminum-magnesium alloy coating on the faying surface were increased to the range of 0.81 to 1.04. The average slip coefficient is 0.91 which is 1.3 times the slip coefficient 0.71 of connections with uncoated faying surface. The slip coefficient of the aluminum-magnesium alloy coated faying surface proved to be more stable compared to that of the pure aluminum coated faying surface. However, the slip coefficients were reduced by 11.1 and 12.9% for aluminum-magnesium alloy and pure aluminum coated faying surface, respectively, when coating thickness was increased from 150 to 450 μm. Using the steel material of SM570MB instead of S490B resulted in an unstable frictional behavior that was presumed to be affected by the discrepancies caused by the blasting and thermal sprayed coating on the steel material. However, the steel material had insignificant effect on the slip coefficient. The use of the super-high strength bolt F14T on the connection led to higher slip resistance than the use of high-strength bolt F10T, but had negligible effect on the slip coefficient. The surface roughness of the steel plate might affect the bond strength between the steel plate and coating, and increasing the surface roughness from 7.1 to 12.8 μm slightly improved the slip coefficient. To prevent the bolts from shear failure after slip occurs, the slip coefficient of the bolted slip-critical connection with aluminum-magnesium coating is suggested to be 0.7 which is 2 times higher than that of the uncoated connection, having a slip coefficient of 0.33. Using the slip coefficient of 0.7 results in a reduction of more than 50% of the bolt amount and the splice plate size, and achieves the saving of the materials, and construction cost and time.
摘要 I
ABSTRACT II
誌謝 IV
目錄 V
表目錄 VIII
圖目錄 IX
符號表 XI
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 5
1.3 研究方法 5
1.4 文獻回顧 5
1.5 論文架構 8
第二章 滑移係數實驗計畫 9
2.1 前言 9
2.2 螺栓預拉力施加及監測方法 9
2.3 實驗試體 13
2.4 表面處理之量測方法 14
2.4.1 覆膜厚度測定方法 14
2.4.2 表面粗糙度量測方法 15
2.5 參數定義 19
2.5.1 滑移載重定義 19
2.5.2 相對滑移定義 20
2.5.3 滑移係數定義 20
2.6 實驗設置 22
2.6.1 加載系統 22
2.6.2 量測系統 22
2.7 實驗程序 25
第三章 先導試驗結果與討論 27
3.1 前言 27
3.2 先導試驗參數規劃 28
3.3 試體行為 29
3.3.1 試體 Blast-cleaned系列 30
3.3.2 試體Al-150系列 31
3.3.3 試體Al-300系列 32
3.3.4 試體Al-450系列 33
3.3.5 試體Al-Mg-150系列 34
3.3.6 試體Al-Mg-300系列 35
3.3.7 試體Al-Mg-450系列 36
3.4 試驗結果比較 37
3.5 先導試驗結論 39
第四章 主體實驗結果與討論 40
4.1 主體實驗參數規劃 40
4.2 試體行為 43
4.2.1 試體SN-HB-R1B系列 43
4.2.2 試體SM-HB-R1B系列 46
4.2.3 試體SN-HB-R1C系列 48
4.2.4 試體SM-HB-R1C系列 50
4.2.5 試體SM-SB-R1C系列 52
4.2.6 試體SM-SB-R2C系列 54
4.3 實驗結果比較 56
4.3.1 熔射覆膜與否於滑移係數之影響 56
4.3.2 螺栓種類於滑移係數之影響 56
4.3.3 鋼板粗糙度於滑移係數之影響 61
4.3.4 接合勁度之探討 61
4.4 摩阻型螺栓接合之設計建議 69
4.5 摩阻型螺栓接合設計案例比較 74
第五章 結論與建議 76
5.1 結論 76
5.2 建議 77
參考文獻 78
American Institute of Steel Construction (AISC), Specification for Structural Steel Buildings, Chicago, IL, 2010.
Annan, C.D., Chiza, A., Characterization of Slip Resistance of High Strength Bolted Connections with Zinc-Based Metallized Faying Surfaces, Engineering Structures, 56, 2187-2196, November, 2013.
Cruz, A., Simoes, R., Alves, R., Slip factor in slip resistant joints with high strength steel, Journal of Constructional Steel Research, 70, 280-288, 2013.
Han Tai Technology Co., Ltd., Technical Support for Surface Modification, pp.8., 2015.
Kojima, K., Saburi, K., Matsuo, S., Inoue, K., Slip Coefficients and Relaxation Characteristics of High Strength Bolted Joints with Aluminum Splayed Splice Plates, Architectural Institute of Japan, 49, 385-388, 2009.
Kulak, G.L., Fisher, J.W., Struik, J.H.A., Guide to Design Criteria for Bolted and Riveted Joints, 2nd ed., IL: American Institute of Steel Construction, Inc, Chicago, 2001.
Nah, H.S., Lee, H.J., Kim, K.S., Kim, W.B., Evaluation of Slip Coefficient of Slip Critical Joints with High Strength Bolts, Structural Engineering and Mechanics, 32(4), 477-788, 2009.
Research Council on Structural Connections (RCSC), Specification for Structural Joints Using High-Strength Bolts, American Institute of Steel Construction, Inc, Chicago, IL, 2014.

SSPC, Steel Structures Painting Manual, Vol. 1, Third edition, Pittsburgh, PA, 1993.
SSPC, Steel Structures Painting Manual, Vol. 2, Sixth edition, The Society for Protective Coatings, Pittsburgh, PA, 1991.
Uno, N., Kubota, M., Nagata, M., Tarui, T., Azuma, K., Kanisawa, H., Yamasaki, S., Miyagawa, T., Super high strength bolt, ”SHTB”, Nippon Steel Technical Report, 97, 2008.
中華民國鋼結構協會,「鋼結構設計手冊 極限設計法」,2012。
內政部營建署,「鋼結構極限設計法規範及解說」,2010。
內部正營建署,「鋼構造建築物鋼結構施工規範」,2007。
王錦華、陳正誠,「超高強度螺栓與高滑動係數連接板簡介」,鋼結構會刊,第15期,2003。
林桓緯,「預力鋼柱基底含摩擦型消能裝置之耐震行為」,國立交通大學土木工程學系碩士論文,陳誠直指導,2013。
陳哲生,「鋼結構防蝕」,鋼結構會刊,第19期,2005。
蔡明達,「熱浸鍍鋅高強度螺栓」,鋼結構會刊,第34期,2009。
蕭威典、劉武漢,「熔射覆膜技術之應用與市場概況」,工業材料雜誌,第57期,2008。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top