跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/10 02:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳倬儒
研究生(外文):Cho-Ju Chen
論文名稱:利用網路使用者評論預測電影票房之研究
論文名稱(外文):Predicting Box-Office of Movies Using Online Reviews
指導教授:胡雅涵胡雅涵引用關係
指導教授(外文):Ya-Han Hu
口試委員:施盛寶楊錦生
口試委員(外文):Sheng-Pao ShihChin-Sheng Yang
口試日期:2015-07-29
學位類別:碩士
校院名稱:國立中正大學
系所名稱:資訊管理學系暨研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:67
中文關鍵詞:票房預測情感分析電影評論
外文關鍵詞:box-office predictionsentiment analysismovie reviews
相關次數:
  • 被引用被引用:3
  • 點閱點閱:947
  • 評分評分:
  • 下載下載:71
  • 收藏至我的研究室書目清單書目收藏:3
電影已經成為民眾主要的休閒活動之一,票房紀錄也不斷創新高,但是電影的製作成本很高,若沒有詳盡的評估,便會造成虧損,而若能提前預測電影票房,便能讓製片公司、發行商和投資者更容易地做決策。電影賣座的原因有很多,導演、影星和宣傳等,而在資訊發達的現在,網路已經成為電影宣傳的主要管道之一,網路上的評論也會被民眾所看到,成為是否觀看該部電影的原因之一。
本研究從IMDb蒐集2009年到2014年間,五種不同電影類型,總共1,658部電影的資料和第一週電影評論,使用SentiStrength和Stanford CoreNLP兩種情感分析工具將評論量化,並結合電影基本資料、外在環境因素等因素預測電影票房。使用10折驗證評估,並應用資料探勘軟體Weka中的M5P、線性迴歸和SMOreg三種預測技術建立電影票房預測模型,最後將其結果和沒有使用評論的電影票房預測結果進行比較,評估的指標包括相關係數、平均絕對誤差和均方根誤差。此外,本研究也找出對電影票房影響較大的因素。
結果顯示,加入評論的預測結果會比沒有使用評論的預測結果來的更好,但是若將電影再依年份分開預測,會因為訓練資料集太小造成結果不理想。加入評論預測電影票房可以提升預測的準確率,評論中對票房影響最大的為評論的數量,評論內容則只會對特定類型的電影產生影響。

Seeing movies has become the most popular leisure activity now, the box-office continue to break records, but the budget of movies are so high, if there were no evaluation, it may be huge loss. If we can predict box-office before it is released, film studios, film distribution and investors can make their decision more easily. There are many factors to influence box-office, directors, actors/actresses, etc. Now, Internet has become the most important way to transfer information, online reviews may be seen by users and take effect on them.
Our research collects 2009 to 2014 movie data and reviews from IMDb, includes 5 genres and total 1,658 movies, we use SentiStrength and Stanford CoreNLP to analyse reviews, combined with movies data and external factor to predict box-office. We use M5P, Linear Regression and SMOreg methods to build prediction models, and compare the result without reviews and result with reviews.
The result shows that the prediction models with reviews are better than without reviews, but if we spilt the data into different year, the results would be lower because the lack of data. Reviews can help the result of prediction, and the principal factor is the number of reviews, reviews can only influence specific genres of movies.

目錄 i
圖目錄 iii
表目錄 iv
第一章 緒論 1
1.1研究背景 1
1.2研究動機 3
1.3研究目的 4
第二章 文獻探討 5
2.1 電影相關研究 5
2.2 情感分析技術 9
2.2.1 機器學習法(Machine Learning Approach) 10
2.2.2 語意導向方法(Semantic-orientation Approach) 10
2.3 本研究使用情感分析技術 12
2.3.1 SentiStrength Sentiment Strength Detection Algorithm 12
2.3.2 Stanford CoreNLP 13
第三章 研究方法 16
3.1 研究架構 16
3.2 資料搜集 18
3.3 變項說明 19
3.3.1 依變項 19
3.3.2 自變項 20
3.3.3 研究變項整理 26
3.4 分類技術 27
3.4.1 M5P 27
3.4.2 SMOreg 28
3.4.3 線性迴歸(Linear Regression) 28
3.5 資料驗證與模型評估 29
3.5.1 資料驗證 29
3.5.2 預測模型評估 29
第四章 實驗 30
4.1 資料集 30
4.2 實驗結果與評估 37
4.3 綜合討論 50
第五章 研究結論與建議 52
5.1 研究結論 52
5.2 研究限制 52
5.3 未來研究方向與建議 53
參考文獻 54

Ba, S., & Pavlou, P. A. (2002). Evidence of the effect of trust building technology in electronic markets: Price premiums and buyer behavior. Management Information Systems Quarterly, 243-268.
Bai, X. (2011). Predicting consumer sentiments from online text. Decision Support Systems, 50(4), 732-742.
Basuroy, S., Chatterjee, S., & Ravid, S. A. (2003). How critical are critical reviews? The box office effects of film critics, star power, and budgets. Journal of Marketing, 67(4), 103-117.
Cantallops, A. S., & Salvi, F. (2014). New consumer behavior: A review of research on eWOM and hotels. International Journal of Hospitality Management, 36, 41-51.
Cao, Q., Duan, W., & Gan, Q. (2011). Exploring determinants of voting for the “helpfulness” of online user reviews: A text mining approach. Decision Support Systems, 50(2), 511-521.
Chen, P. Y., Dhanasobhon, S., & Smith, M. D. (2008). All reviews are not created equal: The disaggregate impact of reviews and reviewers at amazon. com. working paper, Carnegie Mellon University (available at SSRN: http://ssrn.com/abstract=918083).
Chen, Y., & Xie, J. (2005). Third-party product review and firm marketing strategy. Marketing Science, 24(2), 218-240.
Chevalier, J. A., & Mayzlin, D. (2006). The effect of word of mouth on sales: Online book reviews. Journal of Marketing Research, 43(3), 345-354.
Chintagunta, P. K., Gopinath, S., & Venkataraman, S. (2010). The effects of online user reviews on movie box office performance: Accounting for sequential rollout and aggregation across local markets. Marketing Science, 29(5), 944-957.
Clemons, E. K., Gao, G. G., & Hitt, L. M. (2006). When online reviews meet hyperdifferentiation: A study of the craft beer industry. Journal of Management Information Systems, 23(2), 149-171.
Cui, G., Lui, H.-K., & Guo, X. (2012). The effect of online consumer reviews on new product sales. International Journal of Electronic Commerce, 17(1), 39-58.
Dave, K., Lawrence, S., & Pennock, D. M. (2003, May). Mining the peanut gallery: Opinion extraction and semantic classification of product reviews. Paper presented at the Proceedings of the 12th international conference on World Wide Web, Budapest, Hungary.
Davenport, T. H., & Harris, J. G. (2009). What people want (and how to predict it). MIT Sloan Management Review, 50(2), 23-31.
Delen, D., Sharda, R., & Kumar, P. (2007). Movie forecast guru: a web-based DSS for Hollywood managers. Decision Support Systems, 43(4), 1151-1170.
Duan, W., Gu, B., & Whinston, A. B. (2008). Do online reviews matter?—An empirical investigation of panel data. Decision Support Systems, 45(4), 1007-1016.
Forman, C., Ghose, A., & Wiesenfeld, B. (2008). Examining the relationship between reviews and sales: The role of reviewer identity disclosure in electronic markets. Information Systems Research, 19(3), 291-313.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter, 11(1), 10-18.
Heerschop, B., Goossen, F., Hogenboom, A., Frasincar, F., Kaymak, U., & de Jong, F. (2011, October). Polarity analysis of texts using discourse structure. Paper presented at the Proceedings of the 20th ACM international conference on Information and knowledge management, Glasgow, United Kingdom.
Jung, J. J. (2012). Attribute selection-based recommendation framework for short-head user group: An empirical study by MovieLens and IMDB. Expert Systems with Applications, 39(4), 4049-4054.
Karniouchina, E. V. (2011). Impact of star and movie buzz on motion picture distribution and box office revenue. International Journal of Research in Marketing, 28(1), 62-74.
Klein, D., & Manning, C. D. (2003, July). Accurate unlexicalized parsing. Paper presented at the Proceedings of the 41st Annual Meeting on Association for Computational Linguistics-Volume 1, Sapporo, Japan.
Krauss, J., Nann, S., Simon, D., Fischbach, K., & Gloor, P. (2008, June). Predicting movie success and academy awards through sentiment and social network analysis. Paper presented at the European Conference on Information Systems, Galway, Ireland.
Litman, B. R., & Kohl, L. S. (1989). Predicting financial success of motion pictures: The'80s experience. Journal of Media Economics, 2(2), 35-50.
Liu, Y. (2006). Word of mouth for movies: Its dynamics and impact on box office revenue. Journal of Marketing, 70(3), 74-89.
Maks, I., & Vossen, P. (2012). A lexicon model for deep sentiment analysis and opinion mining applications. Decision Support Systems, 53(4), 680-688.
Mestyan, M., Yasseri, T., & Kertesz, J. (2013). Early prediction of movie box office success based on Wikipedia activity big data. PLoS One, 8(8), e71226.
Moreo, A., Romero, M., Castro, J., & Zurita, J. M. (2012). Lexicon-based comments-oriented news sentiment analyzer system. Expert Systems with Applications, 39(10), 9166-9180.
Mudambi, S. M., & Schuff, D. (2010). What makes a helpful online review? A study of customer reviews on Amazon. com. Management Information Systems Quarterly, 34(1), 11.
Neviarouskaya, A., Prendinger, H., & Ishizuka, M. (2010, August). Recognition of affect, judgment, and appreciation in text. Paper presented at the Proceedings of the 23rd International Conference on Computational Linguistics, Beijing, China.
Pai, M.-Y., Chu, H.-C., Wang, S.-C., & Chen, Y.-M. (2013). Electronic word of mouth analysis for service experience. Expert Systems with Applications, 40(6), 1993-2006.
Panaligan, R., & Chen, A. (2013). Quantifying movie magic with google search. Google Whitepaper—Industry Perspectives+ User Insights.
Pang, B., & Lee, L. (2005, June). Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. Paper presented at the Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, Michigan, USA.
Pang, B., Lee, L., & Vaithyanathan, S. (2002, July). Thumbs up?: sentiment classification using machine learning techniques. Paper presented at the Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10.
Pavlou, P. A., & Gefen, D. (2004). Building effective online marketplaces with institution-based trust. Information Systems Research, 15(1), 37-59.
Shanklin, W. (2002). What businesses can learn from the movies. Business Horizons, 45(1), 23-28.
Sharda, R., & Delen, D. (2006). Predicting box-office success of motion pictures with neural networks. Expert Systems with Applications, 30(2), 243-254.
Smith, D., Menon, S., & Sivakumar, K. (2005). Online peer and editorial recommendations, trust, and choice in virtual markets. Journal of Interactive Marketing, 19(3), 15-37.
Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Manning, C. D., Ng, A. Y., et al. (2013, October). Recursive deep models for semantic compositionality over a sentiment treebank. Paper presented at the Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP).
Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., & Kappas, A. (2010). Sentiment strength detection in short informal text. Journal of the American Society for Information Science and Technology, 61(12), 2544-2558.
Wallace, W. T., Seigerman, A., & Holbrook, M. B. (1993). The role of actors and actresses in the success of films: How much is a movie star worth? Journal of cultural economics, 17(1), 1-27.
Yu, X., Liu, Y., Huang, X., & An, A. (2012). Mining online reviews for predicting sales performance: A case study in the movie domain. Knowledge and Data Engineering, IEEE Transactions on, 24(4), 720-734.
Zhang, L., Luo, J., & Yang, S. (2009). Forecasting box office revenue of movies with BP neural network. Expert Systems with Applications, 36(3), 6580-6587.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top