跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 08:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林郁芬
研究生(外文):Yu-Fen Lin
論文名稱:稀土釹與旋鍛製程對AZ71鎂合金腐蝕特性之影響
論文名稱(外文):Effects of Neodymium and Rotary Swaging on Corrosion Behaviors of AZ71 Magnesium Alloys
指導教授:陳貞光
口試委員:陳錦修林招松唐自標
口試日期:2014-07-18
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料及資源工程系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:113
中文關鍵詞:AZ71鎂合金旋轉鍛造抗腐蝕交流阻抗極化
外文關鍵詞:AZ71 magnesium alloysrotary swagingcorrosion resistanceElectrochemical Impedance SpectroscopyPolarization
相關次數:
  • 被引用被引用:1
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鎂合金因輕量化、高比強度、好的熱傳導性質而廣泛應用於3C產品中;但也因鎂合金的化學活性高,因此提升鎂合金之抗蝕能力為當務之急。本研究於AZ71鎂合金中添加0.5、1.0、1.5 wt.%稀土釹,探討各成分在鑄態、均質化熱處理、旋鍛後退火250°C、350°C等溫度,四種製程之抗腐蝕特性。由實驗結果顯示,AZ71鎂合金在添加1.0 wt.%稀土釹時具有最佳抗蝕能力;而由交流阻抗試驗觀察,旋鍛退火350°C後,整體之電荷轉移電阻值(Ra)較大,抗蝕能力最好。此外極化試驗的結果也顯示,腐蝕電流密度(Icorr)大小由鑄態的10-6 A/cm2下降至旋鍛退火後的10-7 A/cm2,其中以350°C旋鍛退火後的腐蝕電流密度最低,整體抗蝕性最佳。由浸泡試驗觀察得知,腐蝕最初皆由含有錳、矽等雜質元素之析出物附近開始產生伽凡尼腐蝕;添加稀土釹提升鎂合金抗蝕能力的主要機制為,因固溶在基地相中的Nd有減輕伽凡尼腐蝕電位差的效果,且在添加1.0wt.% Nd的AZ71中,Al-Nd析出相均勻散布,因此該合金在四種製程下皆有良好的抗蝕能力;但當過量添加1.5 wt.%稀土釹時,因大量團聚的析出相(Al-Nd),使局部伽凡尼腐蝕增加,導致抗蝕效果皆不佳,顯示過量的添加稀土釹,不利於鎂合金之抗蝕性質。

Due to the advantages of high specific strength and reasonable thermal conductivity, magnesium alloys are extensively utilized in 3C product applications. However, the deficient corrosion resistance of magnesium alloys limit their use. In this study, 0.5, 1.0 and 1.5 wt.% of Nd were doped into AZ71 magnesium alloys. The corrosion resistance of these alloys in as-cast, homogenized, rotary swaged, and 250°C and 350°C annealed conditions were studied. According to electrochemical impedance tests, 1.0 wt.% Nd added AZ71 alloy demonstrated the highest total charge transfer resistance after swaging and 350°C annealing, giving the optimum corrosion resistance. The polarization results then showed that the corrosion current densities (Icorr) dropped from 10-6 A/cm2 to 10-7 A/cm2 after annealing. Therefore, the specimens swaged and annealed at 350°C also had the lowest Icorr and the best total corrosion resistance. The 1.0 wt.% Nd doped alloy demonstrated excellent corrosion resistance ability in the four processes studied. It was observed that the impurities of Mn- and Si-containing precipitation initiated local galvanic corrosion at the early stage of corrosion. The Nd-containing matrix phase and homogeneous precipitation of Al-Nd could both reduce the Galvanic corrosion. When 1.5 wt.% Nd was doped to AZ71, the local galvanic corrosion dramatically increases due to the agglomeration of Al-Nd precipitates. Over-doping of Nd to magnesium alloys becomes harmful to their corrosion resistance properties.

摘要 i
ABSTRACT ii
誌謝 iv
目錄 vi
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1 前 言 1
1.2 研究動機與目的 3
第二章 文獻回顧 4
2.1 鎂與鎂合金 4
2.1.1 鎂合金的種類 7
2.2 鎂合金的發展與應用 9
2.3 鎂合金的腐蝕行為 12
2.3.1 均勻腐蝕(General Corrosion) 13
2.3.2 局部腐蝕(Localized Corrosion) 16
2.4 提升鎂合金抗蝕能力的方法 19
2.4.1 鎂的合金化 19
2.5 稀土元素之特性 22
2.5.1 稀土元素對鎂的顯微結構與腐蝕性質之影響 26
2.6 塑性加工對鎂合金腐蝕行為之影響 32
第三章 實驗方法 37
3.1 材料準備 38
3.2 均質化熱處理 40
3.3 成份分析 42
3.4 旋轉鍛造 43
3.5 退火熱處理 46
3.6 腐蝕性質分析 47
3.6.1 浸泡試驗 48
3.6.2 開路電位量測 48
3.6.3 交流阻抗分析 49
3.6.4 極化曲線量測 51
3.7 腐蝕形貌觀察 52
3.7.1 場發射掃描式電子顯微鏡 53
3.7.2 能量散佈光譜儀 54
第四章 結果與討論 55
4.1 浸泡試驗 58
4.1.1 鑄態鎂合金之浸泡試驗 58
4.1.2 均質化鎂合金之浸泡試驗 60
4.1.3 旋轉鍛造後退火250°C鎂合金之浸泡試驗 62
4.1.4 旋轉鍛造後退火350°C鎂合金之浸泡試驗 64
4.2 電化學交流阻抗分析 67
4.2.1 鑄態鎂合金之交流阻抗試驗 67
4.2.2 均質化鎂合金之交流阻抗試驗 71
4.2.3 旋轉鍛造後退火250°C鎂合金之交流阻抗試驗 76
4.2.4 旋轉鍛造後退火350°C鎂合金之交流阻抗試驗 79
4.3 極化試驗 85
4.3.1 鑄態鎂合金之極化試驗 85
4.3.2 均質化鎂合金之極化試驗 88
4.3.3 旋轉鍛造後退火250°C鎂合金之極化試驗 92
4.3.4 旋轉鍛造後退火350°C鎂合金之極化試驗 96
第五章 結論 101
第六章 參考文獻 103


[1]G. Elaheh, In New Trends and Developments in Automotive Industry-Materials in automotive application, state of the art and prospects, Rijeka: InTech, 2011, pp. 365-394.
[2]H. Watanabe, T. Mukai and K. Ishikawa, “Effect of temperature of differential speed rolling on room temperature mechanical properties and texture in an AZ31 magnesium alloy,” Journal of Materials Processing Technology, vol. 182, 2007 pp. 644–647.
[3]E. Aghiona, B. Bronfina and D. Eliezer, “The role of the magnesium industry in protecting the environment,” Journal of Materials Processing Technology, vol. 117, 2001, pp. 381-385.
[4]I. J. Polmear, Light Alloys—Metallurgy of the Light Metals, 2nd ed, Sevenoaks: Wiley, 1989.
[5]F. Rosalbinoa, E. Angelinia, S. D. Negrib, A. Sacconeb and S. Delfino, “Electrochemical behaviour assessment of novel Mg-rich Mg-Al-RE alloys (RE= Ce, Er),” Intermetallics, vol. 14, 2006, pp. 1487-1492.
[6]G. B. Hamu, D. Eliezer, K.S. Shin and S. Cohen, “The relation between microstructure and corrosion behavior of Mg- Y- RE- Zr alloys,” Journal of Alloys and Compounds, vol. 431, 2007, pp. 269-279.
[7]I. J. Polmear, “Recent developments in light alloys,” Journal of Immunological Methods, vol. 37, 1996, pp. 12-31.
[8]Y. Lu, Q. Wang, X. Zeng, W. Ding, C. Zhai and Y. Zhu, “Effects of rare earths on the microstructure, properties and fracture behavior of Mg–Al alloys,” Materials Science and Engineering: A, vol. 278, 2000, pp. 66-76.
[9]J. E. Gray and B. Luan, “Protective coatings on magnesium and its alloys – a critical review,” Journal of Alloys and Compounds, vol. 336, 2002, pp. 88-113.
[10]M. K. Kulekci, “Magnesium and its alloys applications in automotive industry,” International Journal of Advanced Manufacturing Technology, vol. 39, 2008, pp.851–865.
[11]A. J. Brad and L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications, 2nd ed, New York: John Wiley & Sons, 2001, pp. 809-811.
[12]I. Shin and E. A. Carter, “Orbital-free density functional theory simulations of dislocations in magnesium,” Modelling and Simulation in Materials Science and Engineering, vol. 20, 2012, p. 6.
[13]T. Obara, H. Yoshinaga and S. Morozumi, “{1122} <1123> Slip System in Magnesium,” Science reports of the Research Institutes, Tohoku University. Ser. A, Physics, chemistry and metallurgy, vol. 25, 1974, p. 247.
[14]Z. Yang, J. P. Li, J. X. Zhang, G. W. Lorimer and J. Robson, “Review on research and development of magnesium alloys,” Acta Metallurgica Sinica, vol. 21, 2008, pp. 313-328.
[15]G. Chen, X. D. Peng, P. G. Fan, W. D. Xie, Q. Y. Wei, M. Hong and Y. Yang, “Effects of Sr and Y on microstructure and corrosion resistance of AZ31 magnesium alloy,” Transactions of Nonferrous Metals Society of China, vol.21, 2001, pp. 725-731.
[16]C. W. Tan, S. N. Xu, L. Wang, Z. y. Chen, F. C. Wang and H. N. Cai, “Effect of temperature on mechanical behavior of AZ31 magnesium alloy,” Transactions of Nonferrous Metals Society of China, vol. 17, 2007, pp. 41-45.
[17]X. Zhang, K. Zhang, X. G. Li, C. Wang, H. W. Li, C. S. Wang and X. Deng, “Corrosion and electrochemical behavior of as-cast Mg-5Y-7Gd-1Nd-0.5Zr magnesium alloys in 5% NaCl aqueous solution,” Progress in Natural Science: Materials International, vol. 21, 2011, pp. 314-321.
[18]H.Friedrich and S.Schumann, “Research for a new age of magnesium in the automotive industry,” Journal of Materials Processing Technology, vol. 117, 2001, pp. 276-281.
[19]G. Song, “Recent progress in corrosion and protection of Magnesium alloys,” Advanced Engineering Materials, vol. 7, 2005, pp. 563-586.
[20]M. Avedesian and H. Baker, ASM Specialty Handbook-Magnesium and Magnesium Alloys, ASM Metals Park, 1999, pp. 13-43.
[21]C. Blawert, N. Hort and K.U. Kainer, “ Automotive applications of magnesium and its alloys,” Indian Institute of Metals, vol. 57, 2004, pp. 397–408.
[22]H. Dieringa and K. U. Kainer, “Magnesium-der zukunftswerkstoff fur die automobilindustrie,” Mat.-wiss. u. Werkstofftech, vol. 38, 2007, pp. 91–95.
[23]S. Schuman, “ The paths and strategies for increased magnesium application in vehicles,” Materials Science Forum, vol. 488–489, 2005, pp. 1–8.
[24]B. L. Mordike and T. Ebert, “Magnesium - Properties - applications - potential,” Materials Science and Engineering, vol. 302, 2001, pp. 37-45.
[25]A. F. Froats, T. K. Aune, D. Hawke, W. Unsworth and J. Hillis, ASM Handbook -Corrosion of Magnesium and Magnesium Alloys, ASM Materials Park, 1987, pp. 54-740.
[26]M. Pourbaix, “Atlas of Electrochemical Equilibria in Aqueous Solutions,” National Association of Corrosion Engineers, USA, 1974.
[27]J. H. Nordlien, S. Ono, N. Masuko and K. Nişancioğlu, “Morphology and structure of oxide films formed on magnesium by exposure to air and water,” Journal of The Electrochemical Society, vol. 142, 1995, pp. 3320-3322.
[28]J. H. Nordlien, K. Nişancioğlu, S. Ono and N. Masuko, “Morphology and structure of oxide films formed on MgAl alloys by exposure to air and water,” Journal of The Electrochemical Society, vol. 143, 1996, pp. 2564-2571.
[29]W.A. Ferrando, “Review of corrosion and corrosion control of magnesium alloys and composites,” Journal Materials Engineering, vol. 11, 1989, pp. 299-313.
[30]R. Ambat, N. N. Aung and W. Zhou, “Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy,” Corrosion Science, vol. 42, 2000, pp. 1433-1455.
[31]E. Ghali, W. Dietzel and K. U. Kainer, “General and localized corrosion of magnesium alloys: a critical review,” Journal of Materials Engineering and Performance, vol. 13, 2004, pp. 7-23.
[32]M. G. Fontana and N. D. Greene, Corrosion Engineering, 2nd ed, New York: McGraw-Hill, 1986, p. 32.
[33]T. B. Massalski, J. L. Murray, L. H. Bennett and H. Baker, Binary Alloy Phase Diagrams, Metals Park, Ohio : American Society for Metals, 1986.
[34]G. Song, A. Atrens and M. Dargusch, “Infuence of microstructure on the corrosion of diecast AZ91D,” Corrosion Science, vol. 41, 1999, pp. 249-273.
[35]A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal and S. Feliu Jr, “Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media,” Electrochimica Acta, vol.53, 2008, pp. 7890–7902.
[36]J.E. Gray and B. Luan, “Protective coatings on magnesium and its alloys – a critical review,” Journal of Alloys and Compounds, vol. 336, 2002, pp. 88–113.
[37]C. Blawert, D. Fechner, D. Hoche, V. Heitmann, W. Dietzel, K.U. Kainer, P. Zˇivanovic, C. Scharf, A. Ditze, J. Grobner and R. Schmid-Fetzer, “Magnesium secondary alloys: alloy design for magnesium alloys with improved tolerance limits against impurities,” Corrosion Science, vol. 52, 2010, pp. 2452–2468.
[38]A. Yamamoto, A. Watanabe, K. Sugahara, S. Fukumoto and H. Tsubakino,“Deposition coating of magnesium alloys with pure magnesium,” Materials Transactions, vol. 42, 2001, pp. 1237-1242.
[39]R. Arrabal, A. Pardo, M.C. Merino, M. Mohedano, P. Casajus, E. Matykina, P. Skeldon and G. E. Thompson, “Corrosion behaviour of a magnesium matrix composite with a silicate plasma electrolytic oxidation coating,” Corrosion Science, vol. 52, 2010, pp. 3738–3749.
[40]F. Liu, D. Shan, Y. Song, E. H. Han and W. Ke, “Corrosion behavior of the composite ceramic coating containing zirconium oxides on AM30 magnesium alloy by plasma electrolytic oxidation,” Corrosion Science, vol. 53, 2011, pp. 3845–3852.
[41]C. Y. Wang, P. Yao, D. H. Bradhurst, H. K. Liu and S. X. Dou, “Surface modification of Mg2Ni alloy in an acid solution of copper sulfate and sulfuric acid,” Journal of Alloys and Compounds, vol. 285, 1999, pp. 267-271.
[42]Y. Zhang, Y. Shao, T. Zhang, G. Meng and F. Wang, “The effect of epoxy coating containing emeraldine base and hydrofluoric acid doped polyaniline on the corrosion protection of AZ91D magnesium alloy,” Corrosion Science, vol. 53, 2011, pp. 3747–3755.
[43]A. L. Rudd, C. B. Breslin and F. Mansfeld, “The corrosion protection a orded by rare earth conversion coatings applied to magnesium,” Corrosion Science, vol. 42, 2000, pp. 275–288.
[44]H. Y. Hsiao, H. C. Tsung and W. T. Tsai, “Anodization of AZ91D magnesium alloy in silicate-containing electrolytes,” Surface & Coatings Technology, vol. 199, 2005, pp. 127-134.
[45]G. L. Makar and J. Kruger, “corrosion studies of rapidly solidified magnesium alloys,” Journal of The Electrochemical Society, vol. 137, 1990, pp. 414-421.
[46]S. Cai, T, Lei, N. Li and F. Feng, “Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg–Zn alloys,” Materials Science and Engineering, vol. 32, 2012, pp. 2570–2577.
[47]G. Song and D. StJohn, “The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ,” Journal of Light Metals, vol. 2 2002, pp. 1–16.
[48]G. Wu, Y. Fan, H. Gao, C. Zhai and Y. P. Zhu, “The effect of Ca and rare earth elements on the microstructure,mechanical properties and corrosion behavior of AZ91D,” Materials Science and Engineering A , vol. 408, 2005, pp. 255-263.
[49]W. Smith, Structure and Properties of Engineering Alloys, 2nd ed, US: McGRAW-HILL Inc., 1993.
[50]J.W.Chang, X.W. Guo, P. H. Fu, L. M. Peng and W. J. Ding, “Effect of heat treatment on corrosion and electrochemical behaviour of Mg–3Nd–0.2Zn–0.4Zr (wt.%) alloy,” Electrochimica Acta, vol. 52, 2007, pp. 3160–3167.
[51]G. L. Song, A. L. Bowles and D. H. StJohn, “Corrosion resistance of aged die cast magnesium alloy AZ91D,” Materials Science and Engineering, vol. 366, 2004, pp. 74-86.
[52]G. L. Song and A. Atrens, “Corrosion mechanisms of magnesium alloys,” Advanced Engineering Materials, vol. 1, 1999, pp. 11-33.
[53]O. Lunder, J. E. Lein, T. K. Aune and K. Nisancioglu, “The role of Mg17Al12 phase in the corrosion of mg alloy AZ91,” Corrosion, vol. 45, 1989, pp. 741-748.
[54]G. L. Song, A. Atrens, X. L. Wu and B. Zhang, “Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride,” Corrosion Science, vol. 40, 1998, pp. 1769-1791.
[55]B. S. Shin, J. W. Kwon and D. H. Bae, “Microstructure and Deformation Behavior of a Mg-RE-Zn-Al Alloy Reinforced with the Network of a Mg-RE Phase,” Metals and Materials International, vol. 15, 2009, pp. 203-207.
[56]G. Bergman, J. L. Waugh and L. Pauling, “The crystal structure of the metallic phase Mg32(Al, Zn)49,” Acta Crystallographica, vol. 10, 1957, pp. 254-259.
[57]C. J. Boehlert and K. Knittel, “The microstructure, tensile properties, and creep behavior of Mg-Zn alloys containing 0-4.4 wt.% Zn,” Materials Science and Engineering , vol. 417, 2006, pp. 315-321.
[58]I. M. Association, Proceedings, 33rd Annual Meeting : Montreal, Quebec, Canada, May 23 - 25, 1976: Assoc, 1976.
[59]Y. Song, E. H. Han, D. Shan, C. D. Yim and B. S. You, “The effect of Zn concentration on the corrosion behavior of Mg–xZn alloys,” Corrosion Science, vol. 65, 2012, pp. 322–330.
[60]E. F. Emley, Principles of Magnesium Technology: Elsevier Science & Technology, 1966.
[61]Q. Ma, D. H. StJohn and M. T. Frost, “Effect of soluble and insoluble zirconium on the grain refinement of magnesium alloys,” Materials Science Forum, vol. 419-422, 2003, pp. 593-598.
[62]M. M. Avedesian, H. Baker and A. I. H. Committee, Magnesium and Magnesium Alloys: ASM International, The Materials Information Society, 1999.
[63]T. Murai, H. Oguri and S. I. Matsuoka, “Effects of manganese contents on extruded magnesium alloys,” Materials Science Forum, vol. 488-489, 2005, pp. 515-518.
[64]L. Y. Wei, H. Westengen, T. K. Aune and D. Albright, Magnesium Technology 2000, Warrendale, penn: Minerals, Metals & Materials Society, 2000, pp. 153-160.
[65]E. J. Lavernia, E. Gomez and N. J. Grant, “The structures and properties of MgAlZr and MgZnZr alloys produced by liquid dynamic compaction,” Materials Science and Engineering, vol. 95, 1987, pp. 225-236.
[66]A. Luo and M. O. Pekguleryuz, “Cast magnesium alloys for elevated temperature applications,” Journal of Materials Science, vol. 29, 1994, pp. 5259-5271.
[67]R. Ninomiya, T. Ojiro and K. Kubota, “Improved heat resistance of Mg-A1 alloys by the Ca addition,” Acta Metallurgica et Materialia, vol. 43, 1995, pp. 669–674.
[68]J. Polmear, “Recent developments in light alloys,” Materials Transactions. JIM, vol. 37, 1996, pp. 12-31.
[69]B. J. Beaudry and K. A. Gschneidner, The Rare Earths in Modern Science and Technology, New York: Plenum, 1979.
[70]T. Takenaka, T. Ono, Y. Narazaki, Y. Naka and M. Kawakami, “Improvement of corrosion resistance of magnesium metal by rare earth elements,” Electrochimica Acta, vol. 53, 2007, pp. 117–121.
[71]孫茂才,金屬力學性能,哈爾濱:哈爾濱工業大學出版社,2003,第46頁。
[72]黎文獻、余琨、張世軍,「稀土對鎂及Mg-Al合金晶粒细化的研究」,第三届有色合金及特種鑄造國際會議論文集,2003,第69頁。
[73]范才河、陳剛、嚴紅革、陳振華,「稀土在鎂及鎂合金中的作用」,材料導報,第19卷,2005,第61頁。
[74]周學華、衛中領、陳秋榮,「含稀土耐蝕Mg-9Al鑄造鎂合金腐蝕行為研究」,腐蝕與防護,第27卷,2006,第487頁。
[75]G. Pettersen, H. Westengen, R. Hoier and O. Lohne, “Microstructure of a pressure die cast magnesium-4 wt.% aluminium alloy modified with rare earth additions,” Materials Science and Engineering A, vol. 207, 1996, pp. 115–120.
[76]J. H. Zhang, J. Wang, X. Qiu, D. P. Zhang, Z. Tian, X. D. Niu, D. X. Tang and J. Meng, “Effect of Nd on the microstructure, mechanical properties and corrosion behavior of die-cast Mg-4Al-based alloy,” Journal of Alloys and Compounds, vol. 464, 2008, pp. 556-564.
[77]L. L. Jin, Y. B. Kang, P. Chartrand and C. D. Fuerst, “Thermodynamic evaluation and optimization of Al-La, Al-Ce, Al-Pr, Al-Nd and Al-Sm systems using the Modified Quasichemical Model for liquids,” Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, vol. 35, 2011, pp. 30-41.
[78]X. Tian, L. M. Wang, J. L. Wang, Y. B. Liu, J. An and Z. Y. Cao, “The microstructure and mechanical properties of Mg-3Al-3RE alloys,” Journal of Alloys and Compounds, vol. 465, 2008, pp. 412-416.
[79]R. Arrabal, A. Pardo, M.C. Merino, M. Mohedano, P. Casajus, K. Paucar and G. Garces, “Effect of Nd on the corrosion behaviour of AM50 and AZ91D magnesium alloys in 3.5 wt.% NaCl solution,” Corrosion Science, vol. 55, 2012, pp. 301–312.
[80]Y. L. Song, Y. H. Liu, S. R. Yu, X. Y. Zhu and S. H. Wang, “Effect of neodymium on microstructure and corrosion resistance of AZ91 magnesium alloy,” Journal of Materials Science, vol. 42, 2007, pp. 4435-4440.
[81]J. H. Nordlien, K. Nisancioglu, S. Ono and N. Masuko, “Morphology and structure of water-formed oxides on ternary MgAl alloys,” Journal of The Electrochemical Society, vol. 144, 1997, pp. 461–466.
[82]P. L. Miller, B. A. Shaw, R. G. Wendt and W. C. Moshier, “Assessing the corrosion resistance of nonequilibrium Magnesium-Yttrium alloys,” Corrosion Science, vol. 51, 1995, pp. 922-931.
[83]H. Wang, Y. Li and F. Wang, “Influence of cerium on passivity behavior of wrought AZ91 alloy,” Electrochimica Acta, vol. 54, 2008, pp. 706-713.
[84]M. B. Harousha, G. B. Hamu, D. Eliezer and L. Wagner, “The relation between microstructure and corrosion behavior of AZ80 Mg alloy following different extrusion temperatures,” Corrosion Science, vol. 50, 2008, pp. 1766–1778.
[85]Y. Snir, G. B. Hamu, D. Eliezer and E. Abramov, “Effect of compression deformation on the microstructure and corrosion behavior of magnesium alloys,” Journal of Alloys and Compounds, vol. 528, 2012, pp. 84- 90.
[86]D. Song, A. B. Ma, J. H. Jiang, P. H. Lin, D. H. Yang and J. F. Fan, “Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution,” Corrosion Science, vol. 52, 2010, pp. 481-490.
[87]G. B. Hamu, D. Eliezer and L. Wagner, “The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy,” Journal of Alloys and Compounds, vol. 468, 2009, pp. 222–229.
[88]T. Zhang, G. Meng, Y. W. Shao, Z. Y. Cui and F. H. Wang, “Corrosion of hot extrusion AZ91 magnesium alloy Part II: Effect of rare earth element neodymium (Nd) on the corrosion behavior of extruded alloy,” Corrosion Science, vol. 53, 2011, pp. 2934–2942.
[89]Z. X. Shen, A. B. Ma, J. H. Jiang, D. Song and F. M. Lu, “Electrochemical corrosion behavior of ultrafine-grained Mg alloy ZE41A through severe plastic deformation,” Procedia Engineering, vol. 27, 2012, pp. 1817 – 1822.
[90]S. J. Lim, H. J. Choi and C. H. Lee, “Forming characteristics of tubular product through the rotary swaging process,” Journal of Materials Processing Technology, vol. 209, 2009, pp. 283-288.
[91]Z. Esen, “The effect of processing routes on the structure and properties of magnesium–TiNi composites,” Materials Science and Engineering: A, vol. 558, 2012, pp. 632-640.
[92]S. Giribaskar, G. Gouthama and R. Prasad, “Ultra-Fine Grained Al-SiC Metal Matrix Composite by Rotary Swaging Process,” Materials Science Forum, vol. 702-703, 2011, pp. 320-323.
[93]J. C. Danko, G. R. Kilp, R. C. Goodspeed and P. V. Mitchell, “Fabrication of thermoelectric materials by rotary swaging,” Advanced Energy Conversion, vol. 2, 1962, pp. 121-129.
[94]B. Katavić, Z. Odanović and M. Burzić, “Investigation of the rotary swaging and heat treatment on the behavior of W- and γ-phases in PM 92.5W–5Ni–2.5Fe–0.26Co heavy alloy,” Materials Science and Engineering: A, vol. 492, 2008, pp. 337–345.
[95]高振洋、陳貞光、梁誠、郭金國,「旋鍛製程與退火處理對AZ鎂合金之機械性質影響」,鎂合金產業通訊,第54卷,2011,第19-26頁。
[96]L. Lu, D. Yuan, Y. Tang and J. Cheng, “Slave rotation analysis of miniature inner grooved copper tube through rotary swaging process,” The International Journal of Advanced Manufacturing Technology, vol. 61, 2012, pp. 185-193.
[97]陳宇辰,「稀土釹與旋鍛製程對AZ71鎂合金之影響」,國立臺北科技大學碩士論文,2013,第60-90頁。
[98]R. C. Zeng, J. Zhang, W. J. Huang, W. Dietzel, K.U. Kainer, C. Blawert, and W. Ke, “Review of studies on corrosion of magnesium alloys,” Transactions of Nonferrous Metals Society of China, vol. 16, 2006, pp. 763-771.
[99]Y. R. Chu and C. S. Lin, “Citrate gel conversion coating on AZ31 magnesium alloys,” Corrosion Science, vol. 87, 2014, pp. 288-296.


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top