|
[1] J. N. Tiwari, R. N. Tiwari, and K. S. Kim, "Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices," Prog. Mater Sci., vol. 57, no. 4, pp. 724-803, 2012. [2] J. Pan, H. Shen, and S. Mathur, "One-Dimensional SnO2Nanostructures: Synthesis and Applications," J. Nanotechnol., vol. 2012, pp. 1-12, 2012. [3] Jiayu Wan, Alex F. Kaplan, Jia Zheng, Xiaogang Han, Yuchen Chen, Nicholas J. Weadock, Nicholas Faenza, Steven Lacey, Teng Li, Jay Guo , Liangbing Hu, "Two dimensional silicon nanowalls for lithium ion batteries," J. Mater. Chem. A, vol. 2, no. 17, pp. 6051-6057, 2014. [4]N. Singh and L. A. Lyon, "Au Nanoparticle Templated Synthesis of pNIPAm Nanogels," Chem. Mater., vol. 19, no. 4, pp. 719-726, 2007. [5]P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulovic, "Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum," Nano Lett, vol. 9, no. 7, pp. 2532-6, Jul 2009. [6] F. Meng and S. Jin, "The solution growth of copper nanowires and nanotubes is driven by screw dislocations," Nano Lett, vol. 12, no. 1, pp. 234-9, Jan 11 2012. [7] N. Chopra, J. Wu, and P. Agrawal, "Synthesis of Nanoscale Heterostructures Comprised of Metal Nanowires, Carbon Nanotubes, and Metal Nanoparticles: Investigation of Their Structure and Electrochemical Properties," J. Nanomater., vol. 2015, pp. 1-13, 2015. [8] N. Lepot, M. K. Van Bael, H. Van den Rul, J. D'Haen, R. Peeters, D. Franco, J. Mullens, "Synthesis of ZnO nanorods from aqueous solution," Mater. Lett., vol. 61, no. 13, pp. 2624-2627, 2007. [9] M. K. Gupta, J. H. Lee, K. Y. Lee, and S. W. Kim, "Two-dimensional vanadium-doped ZnO nanosheet-based flexible direct current nanogenerator," ACS Nano, vol. 7, no. 10, pp. 8932-9, Oct 22 2013. [10]J. X. Wang, X. W. Sun, A. Wei, Y. Lei, X. P. Cai, C. M. Li, Z. L. Dong, "Zinc oxide nanocomb biosensor for glucose detection," Appl. Phys. Lett., vol. 88, no. 23, 2006. [11]E. Gizeli, "Design considerations for the acoustic waveguide biosensor," Smart Mater. Struct., vol. 6, no. 6, pp. 700-706, 1997. [12]Y. Zhao, W. Li, L. Pan, D. Zhai, Y. Wang, L. Li, W. Cheng, W. Yin, X. Wang, J. B. Xu, Y. Shi, "ZnO-nanorods/graphene heterostructure: a direct electron transfer glucose biosensor," Sci Rep, vol. 6, p. 32327, Aug 30 2016. [13]A. A. Ansari, M. Alhoshan, M. S. Alsalhi, and A. S. Aldwayyan, "Prospects of nanotechnology in clinical immunodiagnostics," Sensors (Basel), vol. 10, no. 7, pp. 6535-81, 2010. [14]S. Y. Lin, S. J. Chang, and T. J. Hsueh, "ZnO nanowires modified with Au nanoparticles for nonenzymatic amperometric sensing of glucose," Appl. Phys. Lett., vol. 104, no. 19, May 12 2014. [15]S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, "Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation," J Phys Chem B, vol. 109, no. 7, pp. 2526-31, Feb 24 2005. [16]WHO, Fact sheet No. 312 in World health Organization (2009). [17]J. Wang, "Electrochemical glucose biosensors," Chem Rev, vol. 108, no. 2, pp. 814-25, Feb 2008. [18]"About diabetes. World Health Organization. (4 April 2014). [19]"Diabetes Fact sheet N°312. WHO. October 2013 (25 March 2014). [20]A. E. Kitabchi, G. E. Umpierrez, J. M. Miles, and J. N. Fisher, "Hyperglycemic crises in adult patients with diabetes," Diabetes Care, vol. 32, no. 7, pp. 1335-43, Jul 2009. [21]G. D. G, Dolores, and Shoback, Greenspan's basic & clinical endocrinology 9th, 2011. [22] "2017衛生福利部" https://www.mohw.gov.tw/cp-16-33598-1.html. [23] “Nanda Nursing Interventions: Nursing Intervention for Diabetes” http://nanda-nursinginterventions.blogspot.com/2011/05/nursing-intervention-for-diabetes.html [24] S. Vijan, "In the clinic. Type 2 diabetes," Ann Intern Med, vol. 152, no. 5, pp. ITC31-15; quiz ITC316, Mar 2 2010. [25] “Diabetes mellitus” https://en.wikipedia.org/wiki/Diabetes_mellitus [26] Diabetes world map - 2000.svg. https://en.wikipedia.org/wiki/File:Diabetes_world_map_-_2000.svg [27]H. Tian, M. Jia, M. Zhang, and J. Hu, "Nonenzymatic glucose sensor based on nickel ion implanted-modified indium tin oxide electrode," Electrochim. Acta, vol. 96, pp. 285-290, 2013. [28]P. Lu, Q. Liu, Y.Xiong, Q. Wang, Y. Lei, S. Lu, L. Lu, Li Yao, "Nanosheets-assembled hierarchical microstructured Ni(OH)2 hollow spheres for highly sensitive enzyme-free glucose sensors," Electrochim. Acta, vol. 168, pp. 148-156, 2015. [29]B. Zhang, Y. He, B. Liu, and D. Tang, "Nickel-functionalized reduced graphene oxide with polyaniline for non-enzymatic glucose sensing," Microchim. Acta, vol. 182, no. 3-4, pp. 625-631, 2014. [30]D. Grieshaber, R. MacKenzie, J. Voros, and E. Reimhult, "Electrochemical Biosensors - Sensor Principles and Architectures," Sensors (Basel), vol. 8, no. 3, pp. 1400-1458, Mar 7 2008. [31]F. Cao, S. Guo, H. Ma, G. Yang, S. Yang, and J. Gong, "Highly sensitive nonenzymatic glucose sensor based on electrospun copper oxide-doped nickel oxide composite microfibers," Talanta, vol. 86, pp. 214-20, Oct 30 2011. [32]"蘇宏基“化學生物感測器講義”東華大學化學系." [33] L. C. Clark, Jr. and C. Lyons, "Electrode systems for continuous monitoring in cardiovascular surgery," Ann N Y Acad Sci, vol. 102, pp. 29-45, Oct 31 1962. [34] S. J. Updike and G. P. Hicks, "The Enzyme Electrode," Nature, vol. 214, no. 5092, pp. 986-988, 1967. [35] J. D. Newman and A. P. Turner, "Home blood glucose biosensors: a commercial perspective," Biosens Bioelectron, vol. 20, no. 12, pp. 2435-53, Jun 15 2005. [36] A. Heller and B. Feldman, "Electrochemical glucose sensors and their applications in diabetes management," Chem Rev, vol. 108, no. 7, pp. 2482-505, Jul 2008. [37] A. Heller and B. Feldman, "Electrochemistry in diabetes management," Acc Chem Res, vol. 43, no. 7, pp. 963-73, Jul 20 2010. [38] M. Gerard, "Application of conducting polymers to biosensors," Biosens. Bioelectron., vol. 17, no. 5, pp. 345-359, 2002. [39] K. Krikstopaitis, J. Kulys, and L. Tetianec, "Bioelectrocatalytical glucose oxidation with phenoxazine modified glucose oxidase," Electrochem. Commun., vol. 6, no. 4, pp. 331-336, 2004. [40] T. W. Tsai, G. Heckert, L. F Neves, Y. Tan, D. Y. Kao, R. G. Harrison, D. E. Resasco, D. W. Schmidtke, "Adsorption of glucose oxidase onto single-walled carbon nanotubes and its application in layer-by-layer biosensors," Anal Chem, vol. 81, no. 19, pp. 7917-25, Oct 1 2009. [41] P. Si, Y. Huang, T. Wang, and J. Ma, "Nanomaterials for electrochemical non-enzymatic glucose biosensors," RSC Adv., vol. 3, no. 11, 2013. [42]S. Park, H. Boo, and T. D. Chung, "Electrochemical non-enzymatic glucose sensors," Anal Chim Acta, vol. 556, no. 1, pp. 46-57, Jan 18 2006. [43] K. E. Toghill and R. G. Compton, "Electrochemical Non-enzymatic Glucose Sensors: A Perspective and an Evaluation," Int. J. Electrochem. Sci., vol. 5, no. 9, pp. 1246-1301, Sep 2010. [44] Z. Zhu, L. Garcia-Gancedo, A. J. Flewitt, H. Xie, F. Moussy, and W. I. Milne, "A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene," Sensors (Basel), vol. 12, no. 5, pp. 5996-6022, 2012. [45] P. D. Hale, T. Inagaki, H. I. Karan, Y. Okamoto, and T. A. Skotheim, "A new class of amperometric biosensor incorporating a polymeric electron-transfer mediator," J. Am. Chem. Soc., vol. 111, no. 9, pp. 3482-3484, 1989. [46] Z. Zhu, L. Garcia-Gancedo, A. J. Flewitt, H. Xie, F. Moussy, and W. I. Milne, "A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene," Sensors (Basel), vol. 12, no. 5, pp. 5996-6022, 2012. [47]K. E. Toghill and R. G. Compton, Int. J. Electrochem. Sci.,2010, 5, 1246–1301. [48]S. Park, H. Boo, and T. D. Chung, "Electrochemical non-enzymatic glucose sensors," Anal Chim Acta, vol. 556, no. 1, pp. 46-57, Jan 18 2006. [49]M. M. Rahman, A. J. Ahammad, J. H. Jin, S. J. Ahn, and J. J. Lee, "A comprehensive review of glucose biosensors based on nanostructured metal-oxides," Sensors (Basel), vol. 10, no. 5, pp. 4855-86, 2010. [50]L. D. Burke, "Premonolayer Oxidation and Its Role in Electrocatalysis," Electrochim. Acta, vol. 39, no. 11-12, pp. 1841-1848, Aug 1994. [51] L. D. Burke, "Premonolayer oxidation and its role in electrocatalysis," Electrochim. Acta, vol. 39, no. 11-12, pp. 1841-1848, 1994. [52] X. J. Zhang, W. Q. Ma, H. H. Nan, and G. F. Wang, "Ultrathin Zinc Oxide Nanofilm on Zinc Substrate for High Performance Electrochemical Sensors,", Electrochim. Acta, vol. 144, pp. 186-193, Oct 20 2014. [53] H. Zhu, L. Li, W. Zhou, Z. Shao, and X. Chen, "Advances in non-enzymatic glucose sensors based on metal oxides," J. Mater. Chem. B, vol. 4, no. 46, pp. 7333-7349, 2016. [54]D. Pletcher, "Electrocatalysis: present and future," J. Appl. Electrochem., vol. 14, no. 4, pp. 403-415, 1984. [55]M. W. Hsiao, "Electrochemical Oxidation of Glucose on Single Crystal and Polycrystalline Gold Surfaces in Phosphate Buffer," J. Electrochem. Soc., vol. 143, no. 3, 1996. [56]S. Park, H. Boo, and T. D. Chung, "Electrochemical non-enzymatic glucose sensors," Anal Chim Acta, vol. 556, no. 1, pp. 46-57, Jan 18 2006. [57]S. Luo, F. Su, C. Liu, J. Li, R. Liu, Y. Xiao, X. Liu, Q. Cai, "A new method for fabricating a CuO/TiO2 nanotube arrays electrode and its application as a sensitive nonenzymatic glucose sensor," Talanta, vol. 86, pp. 157-63, Oct 30 2011. [58] Steckhan E., "Organic synthese with with electrochemically regenerable redox systems, " Topic in Current Chemistry, Vol.142, Steckhan E. eds, Springer-Verlag,Berlin Heidelberg, 1987. [59] M. E. Tess and J. A. Cox, "Chemical and biochemical sensors based on advances in materials chemistry," J. Pharm. Biomed. Anal., vol. 19, no. 1-2, pp. 55-68, 1999. [60]A. J. B. L. R. Faulkner, "Electrochemical Methods, Fundamentals and Applications." [61] "胡啟章,電化學原理與方法,五南圖書出版有限公司",2002. [62] Peter T . Kissinger, William R . Heineman, "Cyclic Voltammetry, " J. Chem. Educ. , vol. 60 , no. 9 ,1983. [63] Wang, Analytical Electrochemistry, 2nd Edition. John Wiley & Sons, Inc.,New York. [64] "Cyclic voltammetry"https://en.wikipedia.org/wiki/Cyclic_voltammetry [65]Bard, A. J., Faulkner, L. R., Leddy,J., & Zoski, C. G. (1980). Electrochemical methods: fundamentals andapplications (Vol. 2). New York: wiley. [66]J. E. B. Randles, "Kinetics of rapid electrode reactions," Spec. Discuss. Faraday Soc.Special, vol. 1, 1947. [67]I. I. Suni, "Impedance methods for electrochemical sensors using nanomaterials," TrAC, Trends Anal. Chem., vol. 27, no. 7, pp. 604-611, 2008. [68]N. S. Ramaraja P Ramasamy, "Electrochemical Impedance Spectroscopy for Microbial Fuel Cell Characterization," Journal of Microbial & Biochemical Technology, 2013. [69] "電化學阻抗譜(Electrochemical Impedance Spectroscopy,EIS)"https://kknews.cc/zh-tw/science/vza5ony.html [70] F. Lisdat and D. Schafer, "The use of electrochemical impedance spectroscopy for biosensing," Anal Bioanal Chem, vol. 391, no. 5, pp. 1555-67, Jul 2008. [71] Morkoç, H. and Ü. Özgür, "General Properties of ZnO, in Zinc Oxide. ", Wiley-VCH Verlag GmbH & Co. KGaA. p. 1-76, 2009. [72] S. K. Arya, S. Saha, J. E. Ramirez-Vick, V. Gupta, S. Bhansali, and S. P. Singh, "Recent advances in ZnO nanostructures and thin films for biosensor applications: review," Anal Chim Acta, vol. 737, pp. 1-21, Aug 6 2012. [73] Z. L. Wang, "Zinc oxide nanostructures: growth, properties and applications," J. Phys.: Condens. Matter, vol. 16, no. 25, pp. R829-R858, 2004. [74] R. Yakimova, "ZnO materials and surface tailoring for biosensing," Frontiers in Bioscience, vol. E4, no. 1, 2012. [75] M. Marie, S. Mandal, and O. Manasreh, "An Electrochemical Glucose Sensor Based on Zinc Oxide Nanorods," Sensors (Basel), vol. 15, no. 8, pp. 18714-23, Jul 30 2015. [76] F. Miao, X. Lu, B. Tao, R. Li, and P. K. Chu, "Glucose oxidase immobilization platform based on ZnO nanowires supported by silicon nanowires for glucose biosensing," Microelectron. Eng., vol. 149, pp. 153-158, 2016. [77]S. N. Sarangi, S. Nozaki, and S. N. Sahu, "ZnO Nanorod-Based Non-Enzymatic Optical Glucose Biosensor," J. Biomed. Nanotechnol., vol. 11, no. 6, pp. 988-996, 2015. [78] F. Zhou, Weixuan Jing, Qiong Wu, Weizhuo Gao, Zhuangde Jiang, Jiafan Shi, Qibing Cui, "Effects of the surface morphologies of ZnO nanotube arrays on the performance of amperometric glucose sensors," Mater. Sci. Semicond. Process., vol. 56, pp. 137-144, 2016. [79] C.L. Lai, X.X. Wang, Y. Zhao, H. Fong, Z.T. Zhu, “Effects of humidity on the ultraviolet nanosensors of aligned electrospun ZnO nanofibers, ” RSC Adv., vol. 3, pp. 6640-6645, 2013. [80] T. L. Yang, D. H. Zhang, J. Ma, H. L. Ma, and Y. Chen, "Transparent conducting ZnO:Al films deposited on organic substrates deposited by r.f. magnetron-sputtering," Thin Solid Films, vol. 326, no. 1-2, pp. 60-62, 1998. [81]D.-J. Kwak, M.-W. Park, and Y.-M. Sung, "Discharge power dependence of structural and electrical properties of Al-doped ZnO conducting film by magnetron sputtering," Vacuum, vol. 83, no. 1, pp. 113-118, 2008. [82]M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, L. S. Wen,"X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films," Appl. Surf. Sci., vol. 158, no. 1-2, pp. 134-140, 2000. [83]C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev,M. Lorenz, M. Grundmann, "Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li," Appl. Phys. Lett., vol. 83, no. 10, pp. 1974-1976, 2003. [84]C. K. Chiang, C. R. Fincher,Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, Alan G. MacDiarmid, "Electrical Conductivity in Doped Polyacetylene," Phys. Rev. Lett., vol. 39, no. 17, pp. 1098-1101, 1977. [85]T.6 Aoki, Y. Hatanaka, and D. C. Look, "ZnO diode fabricated by excimer-laser doping, Appl. Phys. Lett., vol. 76, no. 22, pp. 3257-3258, May 29 2000. [86]D. Chattopadhyay and H. J. Queisser, "Electron scattering by ionized impurities in semiconductors," Rev. Mod. Phys., vol. 53, no. 4, pp. 745-768, 1981. [87]G.-C. Yi, Vapor–Liquid–Solid Growth of Semiconductor Nanowires. 2012. [88]R. S. Wagner and W. C. Ellis, "Vapor‐Liquid‐Solid Mechanism of Single Crystal Growth," Appl. Phys. Lett., vol. 4, no. 5, pp. 89-90, 1964. [89]Y. L. Chueh, M. W. Lai, J. Q. Liang, L. J. Chou, and Z. L. Wang, "Systematic Study of the Growth of Aligned Arrays of α-Fe2O3 and Fe3O4 Nanowires by a Vapor–Solid Process," Adv. Funct. Mater., vol. 16, no. 17, pp. 2243-2251, 2006. [90]A. Umar, S. H. Kim, Y. S. Lee, K. S. Nahm, and Y. B. Hahn, "Catalyst-free large-quantity synthesis of ZnO nanorods by a vapor–solid growth mechanism: Structural and optical properties," J. Cryst. Growth, vol. 282, no. 1-2, pp. 131-136, 2005. [91]F. D. Wang, A. G. Dong, J. W. Sun, R. Tang, H. Yu, and W. E. Buhro, "Solution-liquid-solid growth of semiconductor nanowires," Inorg. Chem., vol. 45, no. 19, pp. 7511-7521, Sep 18 2006. [92]D. D. M. K. Zuraw, Principles of Chemical Vapor Deposition. 2003. [93] J. J. Wu and S. C. Liu, "Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition," Advanced Materials, vol. 14, no. 3, pp. 215-218, 2002. [94] L. Wang, X. Zhang, S. Zhao, G. Zhou, Y. Zhou, and J. Qi, "Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives," Applied Physics Letters, vol. 86, no. 2, 2005. [95]Hong-Ming Lin, "奈米材料合成技術"Department of Materials Engineering Tatung University. [96]J. Y. Li and H.Li, “Physical and Electrical Performance of Vapor–Solid Grown ZnO Straight Nanowires,” Nanoscale Res Lett, vol. 4, pp. 165–168, 2009. [97] K. Edalati, A. Shakiba, J. Vahdati-Khaki, and S. M. Zebarjad, "Low-temperature hydrothermal synthesis of ZnO nanorods: Effects of zinc salt concentration, various solvents and alkaline mineralizers," Materials Research Bulletin, vol. 74, pp. 374-379, 2016. [98]W. I. Park, D. H. Kim, S.-W. Jung, and G.-C. Yi, "Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods," Appl. Phys. Lett., vol. 80, no. 22, pp. 4232-4234, 2002. [99]C. Pacholski, A. Kornowski, and H. Weller, "Self‐Assembly of ZnO: From Nanodots to Nanorods," Angew. Chem. Int. Ed., vol. 41, no. 7, pp. 1188-1191, 2002. [100]A. Wei, X. W. Sun, C. X. Xu, Z. L. Dong, Y. Yang, S. T. Tan, W. Huang, "Growth mechanism of tubular ZnO formed in aqueous solution," Nanotechnol., vol. 17, no. 6, pp. 1740-4, Mar 28 2006. [101] Y. H. Yang, C. X. Wang, B. Wang, N. S. Xu, and G. W. Yang, "ZnO nanowire and amorphous diamond nanocomposites and field emission enhancement," Chemical Physics Letters, vol. 403, no. 4-6, pp. 248-251, 2005. [102] "國立成功大學微奈米科技研究中心" http://cmnst.ncku.edu.tw/bin/home.php. [103]M. Oikawa and K. Toda, "Preparation of Pb(Zr,Ti)O3thin films by an electron beam evaporation technique," Appl. Phys. Lett., vol. 29, no. 8, pp. 491-492, 1976. [104]D. R. Behrisch, Sputtering by Particle Bombardment I. 1981. [105]Q. Ahsanulhaq, A. Umar, and Y. B. Hahn, “Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: Growth mechanism and structural and optical properties,” Nanotechnol, vol. 18, no. 11, pp. 115603-1–115603-7, Mar. 2007. [106] Z.-H. Wang, H.-C. Yu, C.-C. Yang, H.-T. Yeh, and Y.-K. Su, “Lowfrequency noise performance of al-doped ZnO nanorod photosensors by a low-temperature hydrothermal method,” IEEE Trans. Electron Devices,vol. 64, no. 8, pp. 3206–3212, Aug. 2017. [107]C.-L. Hsu, C.-W. Su, and T.-J. Hsueh, "Enhanced field emission of Al-doped ZnO nanowires grown on a flexible polyimide substrate with UV exposure," RSC Adv., vol. 4, no. 6, pp. 2980-2983, 2014. [108]H. H. Mai, V. T. Pham, V. T. Nguyen, C. D. Sai, C. H. Hoang, and T. B. Nguyen, "Non-enzymatic Fluorescent Biosensor for Glucose Sensing Based on ZnO Nanorods,", J. Electron. Mater., vol. 46, no. 6, pp. 3714-3719, Jun 2017. [109]S. N. Sarangi, S. Nozaki, and S. N. Sahu, "ZnO Nanorod-Based Non-Enzymatic Optical Glucose Biosensor," J Biomed Nanotechnol, vol. 11, no. 6, pp. 988-96, Jun 2015.
|