跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 22:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅世偉
研究生(外文):Luo,Shi-Wei
論文名稱:鋁摻雜氧化鋅奈米柱應用於電流式非酵素葡萄糖感測器
論文名稱(外文):Aluminum-doped ZnO nanorods of amperometric non-enzymatic glucose sensor
指導教授:黃建盛黃建盛引用關係
指導教授(外文):Huang,Chien-Sheng
口試委員:黃建盛楊勝州楊智強
口試委員(外文):Huang,Chien-ShengYoung, Sheng-JoueYang, Chih-Chiang
口試日期:2018-07-10
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:97
中文關鍵詞:鋁摻雜氧化鋅奈米柱水熱法非酵素型葡萄糖感測器
外文關鍵詞:Aluminum doped zinc oxidenanorodshydrothermal methodnon-enzymaticglucose sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本次研究以無機金屬氧化物半導體材料作為主題,再以奈米結構方式增加感測葡萄糖面積,做為此次非酵素葡萄糖感測電極,並且改善酵素型電極的缺點,提升再電化學偵測葡萄糖的反應靈敏度與穩定性。
本研究分三階段,第一階段使用水熱法製備氧化鋅奈米柱用來比較量測不同濃度氫氧化鈉溶液下量測葡萄糖感測靈敏度。第二階段,調配不同鋁的比例做摻雜,電子載子濃度增加,有效提升感測催化能力,並找出最佳摻雜鋁的比例,做為此次非酵素葡萄糖感測電極並和第一階段的氧化鋅奈米柱做比較,第三階段使用第二階段最佳摻雜比例將其研製為光葡萄糖感測器。
藉由物性分析(掃描電子顯微鏡、X-射線繞射分析),觀察其奈米結構形貌、元素含量,也更確切知道影響感測器之因素。另外,利用循環伏安法(CV)與電化學交流阻抗分析儀(EIS)觀察不同摻雜量下的氧化鋅奈米柱之電化學特性。藉由摻雜鋁元素改善後,量測在不同濃度下葡萄糖溶液(0~12 mM)與氫氧化鈉溶液(0.1 M)之循環伏安圖,再以最佳鋁摻雜發現具有高的靈敏度83.2(μA/cm2-mM)與決定係數(R2)0.993,第一階段分析氫氧化鈉濃度的不同提升了靈敏度與第二階段觀察到摻雜1.0%鋁原子會占據晶格間隙的位子,由於鋅原子與鋁原子半徑的不同而造成導致氧化鋅晶格的扭曲變形,使載子在晶界的散射增加導致霍爾移動率降低,造成體表面積下降造成導電率比摻雜0.5%鋁原子的略為上升使得靈敏度下降,摻雜0.5%的鋁原子有較適當的體表面積導電率最好使靈敏度最好,摻雜0.1%的鋁離子雖然有較高的體表面積摻雜過少的鋁離子使得導電度較差靈敏度最差,也藉由階段二階段摻雜最佳參數作為第三階段光葡萄糖感測器的研製,其靈敏度94.9(μA/cm2-mM)與決定係數(R2)0.994。

In this study, inorganic metal oxide semiconductors were used as the subject, and the glucose area was increased by the nanostructure method. This was used as the non-enzyme glucose sensing electrode, and the disadvantages of the enzyme electrode were improved and promote electrochemical detection the reaction sensitivity and stability of glucose.
The study was divided into three stages. The first-stage used a hydrothermal method to prepare a zinc oxide nanorods for comparative measurement of glucose sensing sensitivity under different concentrations of sodium hydroxide solution. In the second-stage, blend different aluminum ratios for doping that the concentration of electron carriers was increased and the sensing catalytic ability was effectively promoted. and the ratio of the best-doped aluminum is found that it as the non-enzymatic glucose sensing electrode and compared with the first-stage zinc oxide nanorods. The third-stage use optimal doping ratio in second stage to.develop an optical glucose sensor.
By physical property analysis (scanning electron microscopy and X-ray diffraction analysis), the nanostructured morphology and elemental content were observed, and the factors of effecting the sensor were more accurately known. In addition, electrochemical characteristics of zinc oxide nanorods at different doping amount were observed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). After being improved by doping aluminum element, to measure the different concentration of glucose solution (0-12 mM) and sodium hydroxide solution (0.1 M) of cyclic voltammogram. It was found that the optimal aluminum doping have a high sensitivity of 83.2 (μA/cm2-mM) and a determination coefficient (R2) of 0.993. In the first-stage to analysis different concentration of sodium hydroxide to increase the sensitivity and observed in the second-stage that the doping 1.0% of aluminum atom would occupy the lattice gap due to the difference between the radius of zinc atoms and aluminum atoms that cause the distorted deformation of the crystal lattice of the zinc oxide, so that increase the scattering of the carrier at the grain boundary leads to a decrease in Hall mobility the Hall mobility decreases, and the decrease in the surface area causes the conductivity to be slightly higher than doping the 0.5% of aluminum atoms and the sensitivity is down, and doping 0.5% of aluminum atoms with the best of more appropriate body surface area conductivity and sensitivity. Although doping 0.1% of aluminum ions with a higher body surface area, a little amount of aluminum ions makes the poor conductivity and worst sensitivity. To make the three-stage light glucose sensor by stage-two doping optimal parameters that the sensitivity of 94.9 (μA/cm2-mM) and a determination coefficient (R2) of 0.994.

摘要 ⅰ
ABSTRACT ⅱ
誌謝 ⅳ
目錄 v
表目錄 vii
圖目錄 viii
第 1 章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.2.1 糖尿病 2
1.2.2 酵素與非酵素型葡萄糖感測器 4
第 2 章 文獻回顧 5
2.1 何謂生物感測器 5
2.2 葡萄糖感測器歷史 6
2.2.1 第一型葡萄糖感測器 6
2.2.2 第二代葡萄糖感測器 7
2.2.3 第三代葡萄糖感測器 8
2.3 第四代非酵素型葡萄糖感測器 8
2.3.1 IHOAM 模型 8
2.3.2 Activated chemisorption model 10
2.3.3 金屬氧化物非酵素型葡萄糖感測器 10
2.4 電化學原理 11
2.4.1 電雙層電容器 13
2.4.2 三極式電化學量測系統 14
2.4.3 循環伏安法 15
2.4.4 Randles’等效模擬圖 (Randles’Equivalent Circuit) 16
2.4.5 電化學阻抗頻譜(Electrochemistry Impedance Spectroscopy, EIS) 17
2.5 氧化鋅基本結構與特性 19
2.6 AZO薄膜 21
2.7 摻雜金屬的優點 22
2.8 氧化鋅奈米結構成長機制 23
2.8.1 氣-液-固 (Vapor-Liquid-Solid, VLS)成長機制 23
2.8.2 氣-固 (Vapor-Solid, VS)成長機制 23
2.8.3 溶液-液-固(Solution-Liquid-Solid, SLS)成長機制 24
2.9 氧化鋅奈米結構合成方法 25
2.9.1 化學氣相沉積(Chemical Vapor Deposition, CVD) 25
2.9.2 物理氣相沉積(Physical Vapor Deposition, PVD) 26
2.9.3 水溶液法(Aqueous solution method) 26
2.9.4 水熱法(Hydrothermal method) 26
第 3 章 實驗方法 27
3.1 實驗儀器介紹 27
3.1.1 電化學分析儀器(Electrochemistry Workstation) 27
3.1.2 場發射掃描式電子顯微鏡(Field Emission Electron Microscope, FE-SEM) 27
3.1.3 高解析場發射穿透式電子顯微鏡(High-Resolution Transmission Electron Microscopy, HR-TEM) 28
3.1.4 X-射線繞射分析(XRD) 29
3.1.5 電子束蒸鍍機 (E-beam Evaporator) 31
3.1.6 射頻濺鍍機(RF sputtering) 32
3.2 玻璃基板清洗 33
3.3 電子束蒸鍍鉻、金層 34
3.4 氧化鋅晶種沉積 35
3.5 電化學量測系統 36
3.6 葡萄糖電解質溶液的調配 37
3.7 赤血鹽溶液的調配 37
3.8 氧化鋅實驗步驟 38
3.8.1 氧化鋅工作電極製作流程 38
3.8.2 低溫水熱法合成一維氧化鋅奈米結構 38
3.8.3 氧化鋅奈米結構製作葡萄糖感測器 40
3.9 氧化鋅不同鋁濃度摻雜實驗步驟 41
3.9.1 氧化鋅摻雜鋁工作電極製作流程 41
3.9.2 低溫水熱法合成一維鋁摻雜氧化鋅奈米結構 41
3.9.3 鋁摻雜氧化鋅奈米結構製作葡萄糖感測器 43
第 4 章 結果與討論 45
4.1 氧化鋅奈米柱結果討論 45
4.1.1氧化鋅奈米柱FE-SEM分析 45
4.1.2 氧化鋅奈米柱之電化學分析 46
4.2 鋁摻雜氧化鋅奈米柱結果討論 54
4.2.1 不同鋁摻雜氧化鋅奈米柱之FE-SEM分析 54
4.2.2 氧化鋁鋅奈米奈米柱之循環伏安法量測 56
4.2.3 氧化鋁鋅奈米柱之穩定性量測 59
4.3 氧化鋁鋅光葡萄糖感測器 70
4.3.1 光檢測器薄膜測試 70
4.3.2 氧化鋁鋅奈米柱UV光與暗電流之循環伏安法量測 72
4.2.3 AZO NRs 非酵素葡萄糖感測器能帶圖 74
第 5 章 結論 76
參考文獻 77
Conference 84
[1] J. N. Tiwari, R. N. Tiwari, and K. S. Kim, "Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices," Prog. Mater Sci., vol. 57, no. 4, pp. 724-803, 2012.
[2] J. Pan, H. Shen, and S. Mathur, "One-Dimensional SnO2Nanostructures: Synthesis and Applications," J. Nanotechnol., vol. 2012, pp. 1-12, 2012.
[3] Jiayu Wan, Alex F. Kaplan, Jia Zheng, Xiaogang Han, Yuchen Chen, Nicholas J. Weadock, Nicholas Faenza, Steven Lacey, Teng Li, Jay Guo , Liangbing Hu, "Two dimensional silicon nanowalls for lithium ion batteries," J. Mater. Chem. A, vol. 2, no. 17, pp. 6051-6057, 2014.
[4]N. Singh and L. A. Lyon, "Au Nanoparticle Templated Synthesis of pNIPAm Nanogels," Chem. Mater., vol. 19, no. 4, pp. 719-726, 2007.
[5]P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulovic, "Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum," Nano Lett, vol. 9, no. 7, pp. 2532-6, Jul 2009.
[6] F. Meng and S. Jin, "The solution growth of copper nanowires and nanotubes is driven by screw dislocations," Nano Lett, vol. 12, no. 1, pp. 234-9, Jan 11 2012.
[7] N. Chopra, J. Wu, and P. Agrawal, "Synthesis of Nanoscale Heterostructures Comprised of Metal Nanowires, Carbon Nanotubes, and Metal Nanoparticles: Investigation of Their Structure and Electrochemical Properties," J. Nanomater., vol. 2015, pp. 1-13, 2015.
[8] N. Lepot, M. K. Van Bael, H. Van den Rul, J. D'Haen, R. Peeters, D. Franco, J. Mullens, "Synthesis of ZnO nanorods from aqueous solution," Mater. Lett., vol. 61, no. 13, pp. 2624-2627, 2007.
[9] M. K. Gupta, J. H. Lee, K. Y. Lee, and S. W. Kim, "Two-dimensional vanadium-doped ZnO nanosheet-based flexible direct current nanogenerator," ACS Nano, vol. 7, no. 10, pp. 8932-9, Oct 22 2013.
[10]J. X. Wang, X. W. Sun, A. Wei, Y. Lei, X. P. Cai, C. M. Li, Z. L. Dong, "Zinc oxide nanocomb biosensor for glucose detection," Appl. Phys. Lett., vol. 88, no. 23, 2006.
[11]E. Gizeli, "Design considerations for the acoustic waveguide biosensor," Smart Mater. Struct., vol. 6, no. 6, pp. 700-706, 1997.
[12]Y. Zhao, W. Li, L. Pan, D. Zhai, Y. Wang, L. Li, W. Cheng, W. Yin, X. Wang, J. B. Xu, Y. Shi, "ZnO-nanorods/graphene heterostructure: a direct electron transfer glucose biosensor," Sci Rep, vol. 6, p. 32327, Aug 30 2016.
[13]A. A. Ansari, M. Alhoshan, M. S. Alsalhi, and A. S. Aldwayyan, "Prospects of nanotechnology in clinical immunodiagnostics," Sensors (Basel), vol. 10, no. 7, pp. 6535-81, 2010.
[14]S. Y. Lin, S. J. Chang, and T. J. Hsueh, "ZnO nanowires modified with Au nanoparticles for nonenzymatic amperometric sensing of glucose," Appl. Phys. Lett., vol. 104, no. 19, May 12 2014.
[15]S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, "Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation," J Phys Chem B, vol. 109, no. 7, pp. 2526-31, Feb 24 2005.
[16]WHO, Fact sheet No. 312 in World health Organization (2009).
[17]J. Wang, "Electrochemical glucose biosensors," Chem Rev, vol. 108, no. 2, pp. 814-25, Feb 2008.
[18]"About diabetes. World Health Organization. (4 April 2014).
[19]"Diabetes Fact sheet N°312. WHO. October 2013 (25 March 2014).
[20]A. E. Kitabchi, G. E. Umpierrez, J. M. Miles, and J. N. Fisher, "Hyperglycemic crises in adult patients with diabetes," Diabetes Care, vol. 32, no. 7, pp. 1335-43, Jul 2009.
[21]G. D. G, Dolores, and Shoback, Greenspan's basic & clinical endocrinology 9th, 2011.
[22] "2017衛生福利部" https://www.mohw.gov.tw/cp-16-33598-1.html.
[23] “Nanda Nursing Interventions: Nursing Intervention for Diabetes” http://nanda-nursinginterventions.blogspot.com/2011/05/nursing-intervention-for-diabetes.html
[24] S. Vijan, "In the clinic. Type 2 diabetes," Ann Intern Med, vol. 152, no. 5, pp. ITC31-15; quiz ITC316, Mar 2 2010.
[25] “Diabetes mellitus” https://en.wikipedia.org/wiki/Diabetes_mellitus
[26] Diabetes world map - 2000.svg. https://en.wikipedia.org/wiki/File:Diabetes_world_map_-_2000.svg
[27]H. Tian, M. Jia, M. Zhang, and J. Hu, "Nonenzymatic glucose sensor based on nickel ion implanted-modified indium tin oxide electrode," Electrochim. Acta, vol. 96, pp. 285-290, 2013.
[28]P. Lu, Q. Liu, Y.Xiong, Q. Wang, Y. Lei, S. Lu, L. Lu, Li Yao, "Nanosheets-assembled hierarchical microstructured Ni(OH)2 hollow spheres for highly sensitive enzyme-free glucose sensors," Electrochim. Acta, vol. 168, pp. 148-156, 2015.
[29]B. Zhang, Y. He, B. Liu, and D. Tang, "Nickel-functionalized reduced graphene oxide with polyaniline for non-enzymatic glucose sensing," Microchim. Acta, vol. 182, no. 3-4, pp. 625-631, 2014.
[30]D. Grieshaber, R. MacKenzie, J. Voros, and E. Reimhult, "Electrochemical Biosensors - Sensor Principles and Architectures," Sensors (Basel), vol. 8, no. 3, pp. 1400-1458, Mar 7 2008.
[31]F. Cao, S. Guo, H. Ma, G. Yang, S. Yang, and J. Gong, "Highly sensitive nonenzymatic glucose sensor based on electrospun copper oxide-doped nickel oxide composite microfibers," Talanta, vol. 86, pp. 214-20, Oct 30 2011.
[32]"蘇宏基“化學生物感測器講義”東華大學化學系."
[33] L. C. Clark, Jr. and C. Lyons, "Electrode systems for continuous monitoring in cardiovascular surgery," Ann N Y Acad Sci, vol. 102, pp. 29-45, Oct 31 1962.
[34] S. J. Updike and G. P. Hicks, "The Enzyme Electrode," Nature, vol. 214, no. 5092, pp. 986-988, 1967.
[35] J. D. Newman and A. P. Turner, "Home blood glucose biosensors: a commercial perspective," Biosens Bioelectron, vol. 20, no. 12, pp. 2435-53, Jun 15 2005.
[36] A. Heller and B. Feldman, "Electrochemical glucose sensors and their applications in diabetes management," Chem Rev, vol. 108, no. 7, pp. 2482-505, Jul 2008.
[37] A. Heller and B. Feldman, "Electrochemistry in diabetes management," Acc Chem Res, vol. 43, no. 7, pp. 963-73, Jul 20 2010.
[38] M. Gerard, "Application of conducting polymers to biosensors," Biosens. Bioelectron., vol. 17, no. 5, pp. 345-359, 2002.
[39] K. Krikstopaitis, J. Kulys, and L. Tetianec, "Bioelectrocatalytical glucose oxidation with phenoxazine modified glucose oxidase," Electrochem. Commun., vol. 6, no. 4, pp. 331-336, 2004.
[40] T. W. Tsai, G. Heckert, L. F Neves, Y. Tan, D. Y. Kao, R. G. Harrison, D. E. Resasco, D. W. Schmidtke, "Adsorption of glucose oxidase onto single-walled carbon nanotubes and its application in layer-by-layer biosensors," Anal Chem, vol. 81, no. 19, pp. 7917-25, Oct 1 2009.
[41] P. Si, Y. Huang, T. Wang, and J. Ma, "Nanomaterials for electrochemical non-enzymatic glucose biosensors," RSC Adv., vol. 3, no. 11, 2013.
[42]S. Park, H. Boo, and T. D. Chung, "Electrochemical non-enzymatic glucose sensors," Anal Chim Acta, vol. 556, no. 1, pp. 46-57, Jan 18 2006.
[43] K. E. Toghill and R. G. Compton, "Electrochemical Non-enzymatic Glucose Sensors: A Perspective and an Evaluation," Int. J. Electrochem. Sci., vol. 5, no. 9, pp. 1246-1301, Sep 2010.
[44] Z. Zhu, L. Garcia-Gancedo, A. J. Flewitt, H. Xie, F. Moussy, and W. I. Milne, "A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene," Sensors (Basel), vol. 12, no. 5, pp. 5996-6022, 2012.
[45] P. D. Hale, T. Inagaki, H. I. Karan, Y. Okamoto, and T. A. Skotheim, "A new class of amperometric biosensor incorporating a polymeric electron-transfer mediator," J. Am. Chem. Soc., vol. 111, no. 9, pp. 3482-3484, 1989.
[46] Z. Zhu, L. Garcia-Gancedo, A. J. Flewitt, H. Xie, F. Moussy, and W. I. Milne, "A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene," Sensors (Basel), vol. 12, no. 5, pp. 5996-6022, 2012.
[47]K. E. Toghill and R. G. Compton, Int. J. Electrochem. Sci.,2010, 5, 1246–1301.
[48]S. Park, H. Boo, and T. D. Chung, "Electrochemical non-enzymatic glucose sensors," Anal Chim Acta, vol. 556, no. 1, pp. 46-57, Jan 18 2006.
[49]M. M. Rahman, A. J. Ahammad, J. H. Jin, S. J. Ahn, and J. J. Lee, "A comprehensive review of glucose biosensors based on nanostructured metal-oxides," Sensors (Basel), vol. 10, no. 5, pp. 4855-86, 2010.
[50]L. D. Burke, "Premonolayer Oxidation and Its Role in Electrocatalysis," Electrochim. Acta, vol. 39, no. 11-12, pp. 1841-1848, Aug 1994.
[51] L. D. Burke, "Premonolayer oxidation and its role in electrocatalysis," Electrochim. Acta, vol. 39, no. 11-12, pp. 1841-1848, 1994.
[52] X. J. Zhang, W. Q. Ma, H. H. Nan, and G. F. Wang, "Ultrathin Zinc Oxide Nanofilm on Zinc Substrate for High Performance Electrochemical Sensors,", Electrochim. Acta, vol. 144, pp. 186-193, Oct 20 2014.
[53] H. Zhu, L. Li, W. Zhou, Z. Shao, and X. Chen, "Advances in non-enzymatic glucose sensors based on metal oxides," J. Mater. Chem. B, vol. 4, no. 46, pp. 7333-7349, 2016.
[54]D. Pletcher, "Electrocatalysis: present and future," J. Appl. Electrochem., vol. 14, no. 4, pp. 403-415, 1984.
[55]M. W. Hsiao, "Electrochemical Oxidation of Glucose on Single Crystal and Polycrystalline Gold Surfaces in Phosphate Buffer," J. Electrochem. Soc., vol. 143, no. 3, 1996.
[56]S. Park, H. Boo, and T. D. Chung, "Electrochemical non-enzymatic glucose sensors," Anal Chim Acta, vol. 556, no. 1, pp. 46-57, Jan 18 2006.
[57]S. Luo, F. Su, C. Liu, J. Li, R. Liu, Y. Xiao, X. Liu, Q. Cai, "A new method for fabricating a CuO/TiO2 nanotube arrays electrode and its application as a sensitive nonenzymatic glucose sensor," Talanta, vol. 86, pp. 157-63, Oct 30 2011.
[58] Steckhan E., "Organic synthese with with electrochemically regenerable redox systems, " Topic in Current Chemistry, Vol.142, Steckhan E. eds, Springer-Verlag,Berlin Heidelberg, 1987.
[59] M. E. Tess and J. A. Cox, "Chemical and biochemical sensors based on advances in materials chemistry," J. Pharm. Biomed. Anal., vol. 19, no. 1-2, pp. 55-68, 1999.
[60]A. J. B. L. R. Faulkner, "Electrochemical Methods, Fundamentals and Applications."
[61] "胡啟章,電化學原理與方法,五南圖書出版有限公司",2002.
[62] Peter T . Kissinger, William R . Heineman, "Cyclic Voltammetry, " J. Chem. Educ. , vol. 60 , no. 9 ,1983.
[63] Wang, Analytical Electrochemistry, 2nd Edition. John Wiley & Sons, Inc.,New York.
[64] "Cyclic voltammetry"https://en.wikipedia.org/wiki/Cyclic_voltammetry
[65]Bard, A. J., Faulkner, L. R., Leddy,J., & Zoski, C. G. (1980). Electrochemical methods: fundamentals andapplications (Vol. 2). New York: wiley.
[66]J. E. B. Randles, "Kinetics of rapid electrode reactions," Spec. Discuss. Faraday Soc.Special, vol. 1, 1947.
[67]I. I. Suni, "Impedance methods for electrochemical sensors using nanomaterials," TrAC, Trends Anal. Chem., vol. 27, no. 7, pp. 604-611, 2008.
[68]N. S. Ramaraja P Ramasamy, "Electrochemical Impedance Spectroscopy for Microbial Fuel Cell Characterization," Journal of Microbial & Biochemical Technology, 2013.
[69] "電化學阻抗譜(Electrochemical Impedance Spectroscopy,EIS)"https://kknews.cc/zh-tw/science/vza5ony.html
[70] F. Lisdat and D. Schafer, "The use of electrochemical impedance spectroscopy for biosensing," Anal Bioanal Chem, vol. 391, no. 5, pp. 1555-67, Jul 2008.
[71] Morkoç, H. and Ü. Özgür, "General Properties of ZnO, in Zinc Oxide. ", Wiley-VCH Verlag GmbH & Co. KGaA. p. 1-76, 2009.
[72] S. K. Arya, S. Saha, J. E. Ramirez-Vick, V. Gupta, S. Bhansali, and S. P. Singh, "Recent advances in ZnO nanostructures and thin films for biosensor applications: review," Anal Chim Acta, vol. 737, pp. 1-21, Aug 6 2012.
[73] Z. L. Wang, "Zinc oxide nanostructures: growth, properties and applications," J. Phys.: Condens. Matter, vol. 16, no. 25, pp. R829-R858, 2004.
[74] R. Yakimova, "ZnO materials and surface tailoring for biosensing," Frontiers in Bioscience, vol. E4, no. 1, 2012.
[75] M. Marie, S. Mandal, and O. Manasreh, "An Electrochemical Glucose Sensor Based on Zinc Oxide Nanorods," Sensors (Basel), vol. 15, no. 8, pp. 18714-23, Jul 30 2015.
[76] F. Miao, X. Lu, B. Tao, R. Li, and P. K. Chu, "Glucose oxidase immobilization platform based on ZnO nanowires supported by silicon nanowires for glucose biosensing," Microelectron. Eng., vol. 149, pp. 153-158, 2016.
[77]S. N. Sarangi, S. Nozaki, and S. N. Sahu, "ZnO Nanorod-Based Non-Enzymatic Optical Glucose Biosensor," J. Biomed. Nanotechnol., vol. 11, no. 6, pp. 988-996, 2015.
[78] F. Zhou, Weixuan Jing, Qiong Wu, Weizhuo Gao, Zhuangde Jiang, Jiafan Shi, Qibing Cui, "Effects of the surface morphologies of ZnO nanotube arrays on the performance of amperometric glucose sensors," Mater. Sci. Semicond. Process., vol. 56, pp. 137-144, 2016.
[79] C.L. Lai, X.X. Wang, Y. Zhao, H. Fong, Z.T. Zhu, “Effects of humidity on the ultraviolet nanosensors of aligned electrospun ZnO nanofibers, ” RSC Adv., vol. 3, pp. 6640-6645, 2013.
[80] T. L. Yang, D. H. Zhang, J. Ma, H. L. Ma, and Y. Chen, "Transparent conducting ZnO:Al films deposited on organic substrates deposited by r.f. magnetron-sputtering," Thin Solid Films, vol. 326, no. 1-2, pp. 60-62, 1998.
[81]D.-J. Kwak, M.-W. Park, and Y.-M. Sung, "Discharge power dependence of structural and electrical properties of Al-doped ZnO conducting film by magnetron sputtering," Vacuum, vol. 83, no. 1, pp. 113-118, 2008.
[82]M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, L. S. Wen,"X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films," Appl. Surf. Sci., vol. 158, no. 1-2, pp. 134-140, 2000.
[83]C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev,M. Lorenz, M. Grundmann, "Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li," Appl. Phys. Lett., vol. 83, no. 10, pp. 1974-1976, 2003.
[84]C. K. Chiang, C. R. Fincher,Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, Alan G. MacDiarmid, "Electrical Conductivity in Doped Polyacetylene," Phys. Rev. Lett., vol. 39, no. 17, pp. 1098-1101, 1977.
[85]T.6 Aoki, Y. Hatanaka, and D. C. Look, "ZnO diode fabricated by excimer-laser doping, Appl. Phys. Lett., vol. 76, no. 22, pp. 3257-3258, May 29 2000.
[86]D. Chattopadhyay and H. J. Queisser, "Electron scattering by ionized impurities in semiconductors," Rev. Mod. Phys., vol. 53, no. 4, pp. 745-768, 1981.
[87]G.-C. Yi, Vapor–Liquid–Solid Growth of Semiconductor Nanowires. 2012.
[88]R. S. Wagner and W. C. Ellis, "Vapor‐Liquid‐Solid Mechanism of Single Crystal Growth," Appl. Phys. Lett., vol. 4, no. 5, pp. 89-90, 1964.
[89]Y. L. Chueh, M. W. Lai, J. Q. Liang, L. J. Chou, and Z. L. Wang, "Systematic Study of the Growth of Aligned Arrays of α-Fe2O3 and Fe3O4 Nanowires by a Vapor–Solid Process," Adv. Funct. Mater., vol. 16, no. 17, pp. 2243-2251, 2006.
[90]A. Umar, S. H. Kim, Y. S. Lee, K. S. Nahm, and Y. B. Hahn, "Catalyst-free large-quantity synthesis of ZnO nanorods by a vapor–solid growth mechanism: Structural and optical properties," J. Cryst. Growth, vol. 282, no. 1-2, pp. 131-136, 2005.
[91]F. D. Wang, A. G. Dong, J. W. Sun, R. Tang, H. Yu, and W. E. Buhro, "Solution-liquid-solid growth of semiconductor nanowires," Inorg. Chem., vol. 45, no. 19, pp. 7511-7521, Sep 18 2006.
[92]D. D. M. K. Zuraw, Principles of Chemical Vapor Deposition. 2003.
[93] J. J. Wu and S. C. Liu, "Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition," Advanced Materials, vol. 14, no. 3, pp. 215-218, 2002.
[94] L. Wang, X. Zhang, S. Zhao, G. Zhou, Y. Zhou, and J. Qi, "Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives," Applied Physics Letters, vol. 86, no. 2, 2005.
[95]Hong-Ming Lin, "奈米材料合成技術"Department of Materials Engineering Tatung University.
[96]J. Y. Li and H.Li, “Physical and Electrical Performance of Vapor–Solid Grown ZnO Straight Nanowires,” Nanoscale Res Lett, vol. 4, pp. 165–168, 2009.
[97] K. Edalati, A. Shakiba, J. Vahdati-Khaki, and S. M. Zebarjad, "Low-temperature hydrothermal synthesis of ZnO nanorods: Effects of zinc salt concentration, various solvents and alkaline mineralizers," Materials Research Bulletin, vol. 74, pp. 374-379, 2016.
[98]W. I. Park, D. H. Kim, S.-W. Jung, and G.-C. Yi, "Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods," Appl. Phys. Lett., vol. 80, no. 22, pp. 4232-4234, 2002.
[99]C. Pacholski, A. Kornowski, and H. Weller, "Self‐Assembly of ZnO: From Nanodots to Nanorods," Angew. Chem. Int. Ed., vol. 41, no. 7, pp. 1188-1191, 2002.
[100]A. Wei, X. W. Sun, C. X. Xu, Z. L. Dong, Y. Yang, S. T. Tan, W. Huang, "Growth mechanism of tubular ZnO formed in aqueous solution," Nanotechnol., vol. 17, no. 6, pp. 1740-4, Mar 28 2006.
[101] Y. H. Yang, C. X. Wang, B. Wang, N. S. Xu, and G. W. Yang, "ZnO nanowire and amorphous diamond nanocomposites and field emission enhancement," Chemical Physics Letters, vol. 403, no. 4-6, pp. 248-251, 2005.
[102] "國立成功大學微奈米科技研究中心" http://cmnst.ncku.edu.tw/bin/home.php.
[103]M. Oikawa and K. Toda, "Preparation of Pb(Zr,Ti)O3thin films by an electron beam evaporation technique," Appl. Phys. Lett., vol. 29, no. 8, pp. 491-492, 1976.
[104]D. R. Behrisch, Sputtering by Particle Bombardment I. 1981.
[105]Q. Ahsanulhaq, A. Umar, and Y. B. Hahn, “Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: Growth mechanism and structural and optical properties,” Nanotechnol, vol. 18, no. 11, pp. 115603-1–115603-7, Mar. 2007.
[106] Z.-H. Wang, H.-C. Yu, C.-C. Yang, H.-T. Yeh, and Y.-K. Su, “Lowfrequency noise performance of al-doped ZnO nanorod photosensors by a low-temperature hydrothermal method,” IEEE Trans. Electron Devices,vol. 64, no. 8, pp. 3206–3212, Aug. 2017.
[107]C.-L. Hsu, C.-W. Su, and T.-J. Hsueh, "Enhanced field emission of Al-doped ZnO nanowires grown on a flexible polyimide substrate with UV exposure," RSC Adv., vol. 4, no. 6, pp. 2980-2983, 2014.
[108]H. H. Mai, V. T. Pham, V. T. Nguyen, C. D. Sai, C. H. Hoang, and T. B. Nguyen, "Non-enzymatic Fluorescent Biosensor for Glucose Sensing Based on ZnO Nanorods,", J. Electron. Mater., vol. 46, no. 6, pp. 3714-3719, Jun 2017.
[109]S. N. Sarangi, S. Nozaki, and S. N. Sahu, "ZnO Nanorod-Based Non-Enzymatic Optical Glucose Biosensor," J Biomed Nanotechnol, vol. 11, no. 6, pp. 988-96, Jun 2015.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊