|
1.C. E. Sroog, Polyimides. Prog. Polym. Sci., 1991, 16, 561–694. 2.M. K. Ghosh, K. L. Mittal (eds.), Polyimides: Fundamentals and Applications. Marcel Dekker, New York, 1996. 3.G. S. Liou, H. J. Yen, Polyimides. In: K. Matyjaszewski, M. Moller (eds.), Polymer Science: A Comprehensive Reference. Vol. 5. pp. 497–535, Elsevier BV, Amsterdam, 2012. 4.J. Fang, X. Guo, S. Harada, T. Watari, K. Tanaka, H. Kita, K. Okamoto, Novel sulfonated polyimides as polyelectrolytes for fuel cell application. 1. Synthesis, proton conductivity, and water stability of polyimides from 4,4‘-diaminpdiphenyl ether-2,2‘-disulfonic acid. Macromolecules, 2002, 35, 9022−9028. 5.N, Asano, M. Aoki, S. Suzuki, K. Miyatake, H. Uchida, M. Watanabe, Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications. J. Am. Chem. Soc., 2006, 128, 1762−1769. 6.A. L. Rusanov, E. G. Bulycheva, M. G. Bugaenko, V. Y. Voytekunas, M. J. M. Adadie, Sulfonated polynaphthylimides as proton-conducting membranes for fuel cells. Russ. Chem. Rev., 2009, 78, 53−75. 7.J. C. Chen, J. A. Wu, K. H. Chen, Synthesis and characterization of novel imidazolium-functionalized polyimides for high temperature proton exchange membrane fuel cells. RSC Adv., 2016, 6, 33959–33970. 8.C. A. Terraza, J. G. Liu, Y. Nakamura, Y. Shibasaki, S. Ando, M. Ueda, Synthesis and properties of highly refractive polyimides derived from fluorene-bridged sulfur-containing dianhydrides and diamines. J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 1510−1520. 9.J. G. Liu, M. Ueda, High refractive index polymers: fundamental research and practical applications. J. Mater. Chem., 2009, 19, 8907−8919. 10.K. Fukukawa, M. Ueda, Recent progress of photosensitive polyimides. Polym. J., 2008, 40, 281−296. 11.E. M. Maya, I. Garcia-Yoldi, A. E. Lozano, J. G. de la Campa, J. de Abajo, Synthesis, characterization, and gas separation properties of novel copolyimides containing adamantyl ester pendant groups. Macromolecules, 2011, 44, 2780−2790. 12.H. J. Yen, S. M. Guo, J. M. Yeh, G. S. Liou, Triphenylamine-based polyimides with trimethyl substituents for gas separation membrane and electrochromic applications. J. Polym. Sci. Part A: Polym. Chem., 2011, 49, 3637−3646. 13.H. J. Yen, J. H. Wu, Y. H. Huang, W. C. Wang, K. R. Lee, G. S. Liou, Novel thermally stable and soluble triarylamine functionalized polyimides for gas separation. Polym. Chem., 2014, 5, 4219−4226. 14.H. Mao, S. Zhang, Synthesis, characterization and gas transport properties of novel poly(amine-imide)s containing tetraphenylmethane pendent groups. J. Mater. Chem. A, 2014, 2, 9835−9843. 15.Y. C. Kung, W. F. Lee, S. H. Hsiao, G. S. Liou, New polyimides incorporated with diphenylpyrenylamine unit as fluorophore and redox-chromophore. J. Polym. Sci. Part A: Polym. Chem., 2011, 49, 2210−2221. 16.H. J. Yen, G. S. Liou, Solution-processable triarylamine-based high-performance polymers for resistive switching memory devices. Polym. J., 2016, 48, 117–138. 17.D. J. Liaw, K. L. Wang, Y. C. Huang, K. R. Lee, J. Y. Lai, C. S. Ha, Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci., 2012, 37, 907−974. 18.Y. Shirota, H. Kageyama, Charge carrier transporting molecular materials and their applications in devices. Chem. Rev., 2007, 107, 953–1010. 19.M. Thelakkat, Star-shaped, dendrimeric and polymeric triarylamines as photoconductors and hole transport materials for electro-optical applications. Macromol. Mater. Eng., 2002, 287, 442–461. 20.Y. Shirota, Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications. J. Mater. Chem., 2005, 15, 75–93. 21.N. Ning, H. Tian, Triarylamine: a promising core unit for efficient photovoltaic materials. Chem. Commun., 2009, 5483–5495. 22.A. Iwan, D. Sek, Polymers with triphenylamine units: Photonic and electroactive materials. Prog. Polym. Sci., 2011, 36, 1277–1325. 23.M. Liang, J. Chen, Arylamine organic dyes for dye-sensitized solar cells. Chem. Soc. Rev., 2013, 42, 3453–3488. 24.E. T. Seo, R. F. Nelson, J. M. Fritsch, L. S. Marcoux, D. W. Leedy, R. N. Adams, Anodic oxidation pathways of aromatic amines. Electrochemical and electron paramagnetic resonance studies. J. Am. Chem. Soc., 1966, 88, 3498–3503. 25.R. F. Nelson, R. N. Adams, Anodic oxidation pathways of substituted triphenylamines. II. Quantitative studies of benzidine formation. J. Am. Chem. Soc., 1968, 90, 3925–3930. 26.M. Y. Chou, M. k. Leung, Y. O. Su, C. L. Chiang, C. C. Lin, J. H. Liu, C. K. Kuo, C. Y. Mou, Electropolymerization of starburst triarylamines and their application to electrochromism and electroluminescence. Chem. Mater., 2004, 16, 654–661. 27.L. Otero, L. Sereno, F. Fungo, Y. L. Liao, C. Y. Lin, K. T. Wong, Synthesis and properties of a novel electrochromic polymer obtained from the electropolymerization of a 9,9-spirobifluorene-bridged donor-acceptor (D-A) bichromophore system. Chem. Mater., 2006, 18, 3495–3502. 28.J. Natera, L. Otero, L. Sereno, F. Fungo, N. S. Wang, Y. M. Tsai, T. Y. Hwu, K. T. Wong, A novel electrochromic polymer synthesized through electropolymerization of a new donor-acceptor bipolar system. Macromolecules, 2007, 40, 4456–4463. 29.Y. Oishi, M. Ishida, M. Kakimoto, Y. Imai, T. Kurosaki, Preparation and properties of novel soluble aromatic polyimides from 4,4’-diaminitriphenylamine and aromatic tetracarboxylic dianhydrides. J. Polym. Sci. Part A: Polym. Chem., 1992, 30, 1027−1035. 30.S. H. Cheng, S. H. Hsiao, T. H. Su, G. S. Liou, Novel aromatic poly(amine-imide)s bearing a pendent triphenylamine group: Synthesis, thermal, photophysical, electrochemical, and electrochromic characteristics. Macromolecules, 2005, 38, 307−316. 31.H. J. Yen, G. S. Liou, Solution-processable triarylamine-based electroactive high performance polymers for anodically electrochromic applications. Polym. Chem., 2012, 3, 255–264. 32.S. Mazur, P. S. Lugg, C. Yarnitzky, Electrochemistry of aromatic polyimides. J. Electrochem. Soc., 1987, 134, 346−353. 33.A. Viehbeck, M. J. Goldberg, C. A. Kovac, Electrochemical properties of polyimides and related imide compounds. J. Electrochem. Soc., 1990, 137, 1460−1466. 34.Y. C. Kung, S. H. Hsiao, Solution-processable, high-Tg, ambipolar polyimide electrochromics bearing pyrenylamine units. J. Mater. Chem., 2011, 21, 1746−1754. 35.H. M. Wang, S. H. Hsiao, Ambipolar, multi-electrochromic polypyromellitimides and polynaphthalimides containing di(tert-butyl)-substituted bis(triarylamine) units. J. Mater. Chem. C, 2014, 2, 1553−1564. 36.S. H. Hsiao, J. W. Lin, Facile preparation of electrochromic poly(amine-imide) films from diimide compounds with terminal triphenylamino groups via electrochemical oxidative coupling reactions. Polym. Chem., 2014, 5, 6770−6778. 37.Y. Imai, M. Ishida, M. Kakimoto, Synthesis and properties of new triphenylamine-containing aromatic polyimides based on N,N‘-bis(4-aminophenyl)-N,N‘-diphenyl-4,4‘-biphenyldiamine. High Perform. Polym., 2003, 15, 281−290.
1.P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, Electrochromism: Fundamentals and Applications. VCH, Weinheim, Germany, 1995. 2.P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, Electrochromism and electrochromic devices. Cambridge University Press: Cambridge, UK, 2007. 3.K. Bange, T. Grmbke T (1990) Electrochromic materials for optical switching devices. Adv. Mater., 1990, 2, 10−16. 4.R. D. Rauch, Electrochromic windows: an overview. Electrochim. Acta 1999, 44, 3165−3176. 5.D. R. Rosseinsky, R. J. Mortimer, Electrochromic systems and the prospects for devices. Adv. Mater., 2001, 13, 783−793. 6.A. Michaelis, H. Bernth, D. Haarer, S. Kostromine, R. Neigh, R. Schmidt, Electrochromic dye system for smart window applications. Adv. Mater., 2001, 13, 1825−1828. 7.H. W. Heuer, R. Wehrmann, S. Kirchmeyer, Electrochromic window based on conducting poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate). Adv. Funct. Mater., 2002, 12, 89−94. 8.U. Bach, D. Corr, D. Lupo, F. Pichot, M. Ryan, Nanomaterials-based electrochromics for paper-quality displays. Adv. Mater., 2002, 14, 845−848. 9.R. J. Mortimer, A. L. Dyer, J. R. Reynolds, Electrochromic organic and polymeric materials for display applications. Displays, 2006, 27, 2−18. 10.G. Sonmez, H. B. Sonmez, (2006) Polymeric electrochromics for data storage. J. Mater. Chem. 2006, 16, 2473−2477. 11.P. Anderson, R. Forchheimer, P. Tehrani, M. Berrgren, Printable all-organic electrochromic active-matrix displays. Adv. Funct. Mater., 2007, 17, 3074−3802. 12.F. C. Krebs, Electrochromic displays: the new black. Nat. Mater., 2008, 7, 766−767. 13.S. Beaupre, A. C. Breton, J. Dumas, M. Leclerc, Multicolored electrochromic cells base on poly(2,7-carbazole) derivatives for adaptive camouflage. Chem. Mater., 2009, 21, 1504−1513. 14.P. Tehrani, L. O. Hennerdal, A. L. Dyer, J. R. Reynolds, M. Berrgren Improving the contrast of all-printed electrochromic polymer on paper displays. J. Mater. Chem., 2009, 19, 1799−1802. 15.M. Thelakkat, Star-shaped, dendrimeric and polymeric triarylamines as photoconductors and hole transport materials for electro-optical applications. Macromol. Mater. Eng., 2002, 287, 442–461. 16.(a) Y. Shirota, Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications. J. Mater. Chem., 2005, 15, 75–93. (b) Y. Shirota, H. Kageyama, Charge carrier transporting molecular materials and their applications in devices. Chem. Rev., 2007, 107, 953–1010. 17.(a) Z. Ning, H. Tian, Triarylamine: a promising core unit for efficient photovoltaic materials. Chem. Commun., 2009, 5483–5495. (b) M. Liang, J. Chen, Arylamine organic dyes for dye-sensitized solar cells. Chem. Soc. Rev., 2013, 42, 3453–3488. 18.A. Iwan, D. Sek, Polymers with triphenylamine units: Photonic and electroactive materials. Prog. Polym. Sci., 2011, 36, 1277−1325. 19.S. H. Cheng, S. H. Hsiao, T. H. Su and G. S. Liou Novel aromatic poly(amine-imide)s bearing a pendent triphenylamine group: Synthesis, thermal, photophysical, electrochemical and elctrochromic characteristics. Macromoleculars, 2005, 38. 307−316. 20.G. S. Liou, S. H. Hsiao, T. H. Su, Synthesis luminescence and electrochromic of aromatic poly(amine-amide)s with pendent triphenylamine moieties. J. Mater. Chem., 2005, 15, 1812−1820. 21.G. S. Liou, S. H. Hsiao, H. W. Chen, Novel high-Tg poly(amine-imide)s bearing pendent N-phenylcarbazole units: synthesis and photophysical, electrochemical and electrochromic properties. J. Mater. Chem., 2006, 16, 1831−1842. 22.G. S. Liou, S. H. Hsiao, N. K. Huang, Y. L. Yang, Synthesis, photophysical and electrochromic characterization of wholly aromatic polyamide blue-light-emitting materials. Macromolecules, 2006, 39, 5337−5346. 23.G. S. Liou, S. H. Hsiao, W. C. Chen, H. J. Yen, A new class of high Tg and organosoluble aromatic poly(amine-1,3,4-oxadiazole)s containing donor and acceptor moieties for blue-light-emitting materials. Macromolecules, 2006, 39, 6036−6045. 24.C. W. Chang, G. S. Liou, S. H. Hsiao, Highly stable anodic gren electrochromic aromatic polyamides: synthesis and electrochromic properties. J. Mater. Chem., 2007, 17, 1007−1015. 25.S. H. Hsiao, G. S. Liou, Y. C. Kung, H. J. Yen, High contrast ratio and rapid switching electrochromic polymeric films based on 4-(dimethylamino)triphenylamine-functionalized aromatic polyamides Macromolecules, 2008, 41, 2800−2808. 26.Y. C. Kung, G. S. Liou, S. H. Hsiao, Synthesis and characterization of novel electroactive polyamides and polyimides with bulky 4-(1-adamantoxy)triphenylamine moieties. J. Polym. Sci. Part A: Polym. Chem., 2009, 47, 1740−1755. 27.W. Chen, Z. Zhou, T. Yang, R. Bei, Y. Zhang, S. Liu, Z. Chi, X. Chen, J. Xu, Synthesis and properties of highly organosoluble and low dielectric constant polyimides containing non-polar bulky triphenyl methane moiety. React. Funct. Polym., 2016, 108, 71–77. 28.H. Mao, S. Zhang, Synthesis, characterization and gas transport properties of novel poly(amine-imide)s containing tetraphenylmethane pendent groups. J. Mater. Chem. A, 2014, 2, 9835−9843. 29.S. Bisoi, A. K. Mandal, V. Padmanabhan, S. Banerjee, Aromatic polyamides containing trityl substituted triphenylamine: Gas transport properties and molecular dynamics simulations. J. Membr. Sci., 2017, 522, 77–90. 30.N. Yamazaki, M. Matsumoto, F. Higashi, Studies on reactions of the N-phosphonium salts of pyridines. XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts. J. Polym. Sci., Polym. Chem. Ed., 1975, 13, 1373–1380.
|