跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 19:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖偉愷
研究生(外文):Wei-Kai Liao
論文名稱:含三芳香胺結構之功能性聚醯胺和聚醯亞胺之製備及光電特性研究
論文名稱(外文):Synthesis and Optoelectronic Properties of Functional Polyamides and Polyimides with Triarylamine Units
指導教授:蕭勝輝
指導教授(外文):Sheng-Huei Hsiao
口試委員:李文福陳志堅劉貴生蕭勝輝
口試委員(外文):Wen-Fu LeeJyh-Chien ChenGuey-Sheng LiouSheng-Huei Hsiao
口試日期:2017-01-24
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:119
中文關鍵詞:聚醯亞胺聚醯胺三苯甲基雙極電致變色聚合物電化學聚合電化學均苯四甲酸二酐三苯胺
外文關鍵詞:PolyimidePolyamideTritylAmbipolar electrochromic polymersElectrochemical polymerizationElectrochemistryPyromellitic diimideTriphenylamine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:230
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
本論文首先以4-胺基三苯胺與均苯四甲酸二酐(PMDA)進行縮合反應合成具有雙三苯胺的化合物N,N’-Bis(4-diphenylaminophenyl)pyromellitimide,藉由三苯胺自由基陽離子之間的偶聯反應在電極表面電聚合成電活性的高分子薄膜(PI-E),這高分子薄膜具有可逆的電化學氧化還原反應,並且會伴隨著明顯的電致變色現象,PI-E高分子薄膜可由無色的中性態變為橙黃色和藍色的氧化態,也可以在還原時變成淺綠色和粉紅色的陰極變色,並使用PI-E薄膜作為電致變色材料製作成電致變色元件作為電致變色應用的初步研究,並利用N,N’-bis(4-aminophenyl)-N,N’-diphenyl-4,4’-biphenydiamine與PMDA進行兩步驟聚合反應製備出結構相似的聚醯亞胺(PI-C),並將其電化學和電致變色性能與電聚合合成的PI-E進行比較。
在論文第二部分中合成了一系列含三苯甲基取代的三苯胺結構的聚醯胺與聚醯亞胺,分別由4,4’-diamino-4”-trityltriphenylamine與二羧酸和二酸酐進行縮聚合反應合成,此一系列的高分子皆具備良好的溶解性,在常溫皆可溶解在大部分的極性溶劑中,並導入脂肪族的二羧酸和四羧酸二酸酐,降低因電荷轉移所產生的顏色,這些高分子的玻璃轉移溫度在206~336 oC之間,呈現可逆的氧化還原過程,並伴隨著明顯的顏色變化,由無色的中性態轉變成藍綠色的氧化態,其中聚醯胺因具有較低的氧化電位,因此比聚醯亞胺有更高的電致變色穩定性與著色效率。
In the first part of this thesis, a bis(triphenylamine)-pyromellitic diimide compound (TPA-PMDI) was synthesized from the condensation reaction of 4-aminotriphenylamine with pyromellitic dianhydride (PMDA). The dicarboximide TPA-PMDI could be electrochemically polymerized into ambipolar, redox-active polyimide films on the electrode surface in an electrolyte solution via the coupling reactions between triphenylamine radical cations. The electro-generated polyimide films (coded as PI-E) exhibit reversible redox processes and stable color changes upon electro-oxidation, changing from colorless neutral form to orange-yellowish and blue oxidized states. The film also could display pale green and pink cathodic coloring upon electro-reduction. Electrochromic devices using the electropolymerized film as an active layer were also fabricated as preliminary investigations for electrochromic applications. For a comparative study, a structurally similar polyimide (PI-C) was prepared by a conventional two-step condensation from N,N’-bis(4-aminophenyl)-N,N’-diphenyl-4,4’-biphenydiamine with PMDA, and its electrochemical and electrochromic properties were compared with those of the electro-synthesized PI-E.

In the second part of this thesis, two series of polyamides and polyimides containing trityl (triphenylmethyl)-substituted triphenylamine units were synthesized from condensation reactions of 4,4’-diamino-4”-trityltriphenylamine with various dicarboxylic acids and tetracarboxylic dianhydrides, respectively. All the polymers were readily soluble in many organic solvents. The use of aliphatic diacid or dianhydride reduces interchain charge transfer complexing and leads to colorless polyamide and polyimide films. These polymers showed glass-transition temperature in the range of 206-336 °C. Cyclic voltammograms of the polyamide and polyimide films cast onto the indium-tin oxide (ITO)-coated glass substrate revealed reversible electrochemical oxidation processes accompanied with strong color changes from the colorless neutral state to blue-green or blue oxidized forms at applied potentials ranging from 0 to 1.0 V or 1.3 V. As compared to the polyimide counterparts, the polyamides showed lower oxidation potentials and thus higher electrochromic stability and coloration efficiency.
摘要 i
ABSTRACT iii
ACKNOWLEDGEMENTS v
CONTENTS vi
LIST OF SCHEMES x
LIST OF TABLES x
LIST OF FIGURES xii
Part I
ABSTRACT 2
CHAPTER 1 3
CHAPTER 2 5
2.1 Materials and Instrumentation 5
2.1.1 Materials 5
2.1.2 Instrumentation 5
2.2 Monomer Synthesis 7
2.2.1 N,N’-Bis(4-diphenylaminophenyl)pyromellitimide (TPA-PMDI) 7
2.2.2 N,N’-Bis(4-nitrophenyl)-N,N’-diphenyl-4,4’-biphenyldiamine (2) 7
2.2.3 N,N’-Bis(4-aminophenyl)-N,N’-diphenyl-4,4’-biphenyldiamine (3) 8
2.2.4 N-(4-Diphenylaminophenyl)phthalimide (M1) 9
2.2.5 N,N’-Bis(phthalimide)-N,N’-bis(4-aminophenyl)-N,N’-diphenyl-4,4’-Biphenyldiamine (M2) 10
2.3 Conventional Synthesis of Polyimide PI-C 11
2.4 Electrochemical Polymerization 12
2.5 Fabrication of Electrochromic Devices 12
CHAPTER 3 13
3.1 Synthesis of Monomers and Model Compounds 13
3.2 Conventional synthesis of PI-C 15
3.3 Electrochemical Activity of Monomer and Model Compounds 27
3.4 Polymer Properties 32
3.4.1 Thermal Properties of PI-C 32
3.4.2 Optical Properties 34
3.4.3 Electrochemical Properties 35
3.4.4 Spectroelectrochemical and Electrochromic Properties 39
3.5 Surface Morphology 45
3.6 Electrochromic Switching 46
3.7 Electrochromic Devices 54
CHAPTER 4 56
REFERENCES 57
Part II
ABSTRACT 63
CHAPTER 1 64
CHAPTER 2 66
2.1 Materials and Instrumentation 66
2.1.1 Materials 66
2.1.2 Instrumentation 67
2.2 Monomer Synthesis 68
2.2.1 4-Tritylaniline (1) 68
2.2.2 4,4’-Dinitro -4”-trityltriphenylamine (2) 68
2.2.3 4,4’-Diamino -4”-trityltriphenylamine (3) 69
2.3 Synthesis of Polyamides 71
2.4 Synthesis of Polyimides 72
2.5 Preparation of the Polymer films 73
2.6 Instrumentation and Measurements 73
CHAPTER 3 75
3.1 Monomer Synthesis 75
3.2 Synthesis of Polyamides 81
3.3 Synthesis of Polyimides 85
3.4 Properties of Polyamides and Polyimides 89
3.4.1 Solubility 89
3.4.2 Thermal Properties 91
3.4.3 Electrochemical Properties 95
3.4.4 Spectroelectrochemical and Electrochromic Properties 101
3.4.5 Electrochromic Switching and Stability 108
CHAPTER 4 115
REFERENCES 116
1.C. E. Sroog, Polyimides. Prog. Polym. Sci., 1991, 16, 561–694.
2.M. K. Ghosh, K. L. Mittal (eds.), Polyimides: Fundamentals and Applications. Marcel Dekker, New York, 1996.
3.G. S. Liou, H. J. Yen, Polyimides. In: K. Matyjaszewski, M. Moller (eds.), Polymer Science: A Comprehensive Reference. Vol. 5. pp. 497–535, Elsevier BV, Amsterdam, 2012.
4.J. Fang, X. Guo, S. Harada, T. Watari, K. Tanaka, H. Kita, K. Okamoto, Novel sulfonated polyimides as polyelectrolytes for fuel cell application. 1. Synthesis, proton conductivity, and water stability of polyimides from 4,4‘-diaminpdiphenyl ether-2,2‘-disulfonic acid. Macromolecules, 2002, 35, 9022−9028.
5.N, Asano, M. Aoki, S. Suzuki, K. Miyatake, H. Uchida, M. Watanabe, Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications. J. Am. Chem. Soc., 2006, 128, 1762−1769.
6.A. L. Rusanov, E. G. Bulycheva, M. G. Bugaenko, V. Y. Voytekunas, M. J. M. Adadie, Sulfonated polynaphthylimides as proton-conducting membranes for fuel cells. Russ. Chem. Rev., 2009, 78, 53−75.
7.J. C. Chen, J. A. Wu, K. H. Chen, Synthesis and characterization of novel imidazolium-functionalized polyimides for high temperature proton exchange membrane fuel cells. RSC Adv., 2016, 6, 33959–33970.
8.C. A. Terraza, J. G. Liu, Y. Nakamura, Y. Shibasaki, S. Ando, M. Ueda, Synthesis and properties of highly refractive polyimides derived from fluorene-bridged sulfur-containing dianhydrides and diamines. J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 1510−1520.
9.J. G. Liu, M. Ueda, High refractive index polymers: fundamental research and practical applications. J. Mater. Chem., 2009, 19, 8907−8919.
10.K. Fukukawa, M. Ueda, Recent progress of photosensitive polyimides. Polym. J., 2008, 40, 281−296.
11.E. M. Maya, I. Garcia-Yoldi, A. E. Lozano, J. G. de la Campa, J. de Abajo, Synthesis, characterization, and gas separation properties of novel copolyimides containing adamantyl ester pendant groups. Macromolecules, 2011, 44, 2780−2790.
12.H. J. Yen, S. M. Guo, J. M. Yeh, G. S. Liou, Triphenylamine-based polyimides with trimethyl substituents for gas separation membrane and electrochromic applications. J. Polym. Sci. Part A: Polym. Chem., 2011, 49, 3637−3646.
13.H. J. Yen, J. H. Wu, Y. H. Huang, W. C. Wang, K. R. Lee, G. S. Liou, Novel thermally stable and soluble triarylamine functionalized polyimides for gas separation. Polym. Chem., 2014, 5, 4219−4226.
14.H. Mao, S. Zhang, Synthesis, characterization and gas transport properties of novel poly(amine-imide)s containing tetraphenylmethane pendent groups. J. Mater. Chem. A, 2014, 2, 9835−9843.
15.Y. C. Kung, W. F. Lee, S. H. Hsiao, G. S. Liou, New polyimides incorporated with diphenylpyrenylamine unit as fluorophore and redox-chromophore. J. Polym. Sci. Part A: Polym. Chem., 2011, 49, 2210−2221.
16.H. J. Yen, G. S. Liou, Solution-processable triarylamine-based high-performance polymers for resistive switching memory devices. Polym. J., 2016, 48, 117–138.
17.D. J. Liaw, K. L. Wang, Y. C. Huang, K. R. Lee, J. Y. Lai, C. S. Ha, Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci., 2012, 37, 907−974.
18.Y. Shirota, H. Kageyama, Charge carrier transporting molecular materials and their applications in devices. Chem. Rev., 2007, 107, 953–1010.
19.M. Thelakkat, Star-shaped, dendrimeric and polymeric triarylamines as photoconductors and hole transport materials for electro-optical applications. Macromol. Mater. Eng., 2002, 287, 442–461.
20.Y. Shirota, Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications. J. Mater. Chem., 2005, 15, 75–93.
21.N. Ning, H. Tian, Triarylamine: a promising core unit for efficient photovoltaic materials. Chem. Commun., 2009, 5483–5495.
22.A. Iwan, D. Sek, Polymers with triphenylamine units: Photonic and electroactive materials. Prog. Polym. Sci., 2011, 36, 1277–1325.
23.M. Liang, J. Chen, Arylamine organic dyes for dye-sensitized solar cells. Chem. Soc. Rev., 2013, 42, 3453–3488.
24.E. T. Seo, R. F. Nelson, J. M. Fritsch, L. S. Marcoux, D. W. Leedy, R. N. Adams, Anodic oxidation pathways of aromatic amines. Electrochemical and electron paramagnetic resonance studies. J. Am. Chem. Soc., 1966, 88, 3498–3503.
25.R. F. Nelson, R. N. Adams, Anodic oxidation pathways of substituted triphenylamines. II. Quantitative studies of benzidine formation. J. Am. Chem. Soc., 1968, 90, 3925–3930.
26.M. Y. Chou, M. k. Leung, Y. O. Su, C. L. Chiang, C. C. Lin, J. H. Liu, C. K. Kuo, C. Y. Mou, Electropolymerization of starburst triarylamines and their application to electrochromism and electroluminescence. Chem. Mater., 2004, 16, 654–661.
27.L. Otero, L. Sereno, F. Fungo, Y. L. Liao, C. Y. Lin, K. T. Wong, Synthesis and properties of a novel electrochromic polymer obtained from the electropolymerization of a 9,9-spirobifluorene-bridged donor-acceptor (D-A) bichromophore system. Chem. Mater., 2006, 18, 3495–3502.
28.J. Natera, L. Otero, L. Sereno, F. Fungo, N. S. Wang, Y. M. Tsai, T. Y. Hwu, K. T. Wong, A novel electrochromic polymer synthesized through electropolymerization of a new donor-acceptor bipolar system. Macromolecules, 2007, 40, 4456–4463.
29.Y. Oishi, M. Ishida, M. Kakimoto, Y. Imai, T. Kurosaki, Preparation and properties of novel soluble aromatic polyimides from 4,4’-diaminitriphenylamine and aromatic tetracarboxylic dianhydrides. J. Polym. Sci. Part A: Polym. Chem., 1992, 30, 1027−1035.
30.S. H. Cheng, S. H. Hsiao, T. H. Su, G. S. Liou, Novel aromatic poly(amine-imide)s bearing a pendent triphenylamine group: Synthesis, thermal, photophysical, electrochemical, and electrochromic characteristics. Macromolecules, 2005, 38, 307−316.
31.H. J. Yen, G. S. Liou, Solution-processable triarylamine-based electroactive high performance polymers for anodically electrochromic applications. Polym. Chem., 2012, 3, 255–264.
32.S. Mazur, P. S. Lugg, C. Yarnitzky, Electrochemistry of aromatic polyimides. J. Electrochem. Soc., 1987, 134, 346−353.
33.A. Viehbeck, M. J. Goldberg, C. A. Kovac, Electrochemical properties of polyimides and related imide compounds. J. Electrochem. Soc., 1990, 137, 1460−1466.
34.Y. C. Kung, S. H. Hsiao, Solution-processable, high-Tg, ambipolar polyimide electrochromics bearing pyrenylamine units. J. Mater. Chem., 2011, 21, 1746−1754.
35.H. M. Wang, S. H. Hsiao, Ambipolar, multi-electrochromic polypyromellitimides and polynaphthalimides containing di(tert-butyl)-substituted bis(triarylamine) units. J. Mater. Chem. C, 2014, 2, 1553−1564.
36.S. H. Hsiao, J. W. Lin, Facile preparation of electrochromic poly(amine-imide) films from diimide compounds with terminal triphenylamino groups via electrochemical oxidative coupling reactions. Polym. Chem., 2014, 5, 6770−6778.
37.Y. Imai, M. Ishida, M. Kakimoto, Synthesis and properties of new triphenylamine-containing aromatic polyimides based on N,N‘-bis(4-aminophenyl)-N,N‘-diphenyl-4,4‘-biphenyldiamine. High Perform. Polym., 2003, 15, 281−290.

1.P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, Electrochromism: Fundamentals and Applications. VCH, Weinheim, Germany, 1995.
2.P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, Electrochromism and electrochromic devices. Cambridge University Press: Cambridge, UK, 2007.
3.K. Bange, T. Grmbke T (1990) Electrochromic materials for optical switching devices. Adv. Mater., 1990, 2, 10−16.
4.R. D. Rauch, Electrochromic windows: an overview. Electrochim. Acta 1999, 44, 3165−3176.
5.D. R. Rosseinsky, R. J. Mortimer, Electrochromic systems and the prospects for devices. Adv. Mater., 2001, 13, 783−793.
6.A. Michaelis, H. Bernth, D. Haarer, S. Kostromine, R. Neigh, R. Schmidt, Electrochromic dye system for smart window applications. Adv. Mater., 2001, 13, 1825−1828.
7.H. W. Heuer, R. Wehrmann, S. Kirchmeyer, Electrochromic window based on conducting poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate). Adv. Funct. Mater., 2002, 12, 89−94.
8.U. Bach, D. Corr, D. Lupo, F. Pichot, M. Ryan, Nanomaterials-based electrochromics for paper-quality displays. Adv. Mater., 2002, 14, 845−848.
9.R. J. Mortimer, A. L. Dyer, J. R. Reynolds, Electrochromic organic and polymeric materials for display applications. Displays, 2006, 27, 2−18.
10.G. Sonmez, H. B. Sonmez, (2006) Polymeric electrochromics for data storage. J. Mater. Chem. 2006, 16, 2473−2477.
11.P. Anderson, R. Forchheimer, P. Tehrani, M. Berrgren, Printable all-organic electrochromic active-matrix displays. Adv. Funct. Mater., 2007, 17, 3074−3802.
12.F. C. Krebs, Electrochromic displays: the new black. Nat. Mater., 2008, 7, 766−767.
13.S. Beaupre, A. C. Breton, J. Dumas, M. Leclerc, Multicolored electrochromic cells base on poly(2,7-carbazole) derivatives for adaptive camouflage. Chem. Mater., 2009, 21, 1504−1513.
14.P. Tehrani, L. O. Hennerdal, A. L. Dyer, J. R. Reynolds, M. Berrgren Improving the contrast of all-printed electrochromic polymer on paper displays. J. Mater. Chem., 2009, 19, 1799−1802.
15.M. Thelakkat, Star-shaped, dendrimeric and polymeric triarylamines as photoconductors and hole transport materials for electro-optical applications. Macromol. Mater. Eng., 2002, 287, 442–461.
16.(a) Y. Shirota, Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications. J. Mater. Chem., 2005, 15, 75–93. (b) Y. Shirota, H. Kageyama, Charge carrier transporting molecular materials and their applications in devices. Chem. Rev., 2007, 107, 953–1010.
17.(a) Z. Ning, H. Tian, Triarylamine: a promising core unit for efficient photovoltaic materials. Chem. Commun., 2009, 5483–5495. (b) M. Liang, J. Chen, Arylamine organic dyes for dye-sensitized solar cells. Chem. Soc. Rev., 2013, 42, 3453–3488.
18.A. Iwan, D. Sek, Polymers with triphenylamine units: Photonic and electroactive materials. Prog. Polym. Sci., 2011, 36, 1277−1325.
19.S. H. Cheng, S. H. Hsiao, T. H. Su and G. S. Liou Novel aromatic poly(amine-imide)s bearing a pendent triphenylamine group: Synthesis, thermal, photophysical, electrochemical and elctrochromic characteristics. Macromoleculars, 2005, 38. 307−316.
20.G. S. Liou, S. H. Hsiao, T. H. Su, Synthesis luminescence and electrochromic of aromatic poly(amine-amide)s with pendent triphenylamine moieties. J. Mater. Chem., 2005, 15, 1812−1820.
21.G. S. Liou, S. H. Hsiao, H. W. Chen, Novel high-Tg poly(amine-imide)s bearing pendent N-phenylcarbazole units: synthesis and photophysical, electrochemical and electrochromic properties. J. Mater. Chem., 2006, 16, 1831−1842.
22.G. S. Liou, S. H. Hsiao, N. K. Huang, Y. L. Yang, Synthesis, photophysical and electrochromic characterization of wholly aromatic polyamide blue-light-emitting materials. Macromolecules, 2006, 39, 5337−5346.
23.G. S. Liou, S. H. Hsiao, W. C. Chen, H. J. Yen, A new class of high Tg and organosoluble aromatic poly(amine-1,3,4-oxadiazole)s containing donor and acceptor moieties for blue-light-emitting materials. Macromolecules, 2006, 39, 6036−6045.
24.C. W. Chang, G. S. Liou, S. H. Hsiao, Highly stable anodic gren electrochromic aromatic polyamides: synthesis and electrochromic properties. J. Mater. Chem., 2007, 17, 1007−1015.
25.S. H. Hsiao, G. S. Liou, Y. C. Kung, H. J. Yen, High contrast ratio and rapid switching electrochromic polymeric films based on 4-(dimethylamino)triphenylamine-functionalized aromatic polyamides Macromolecules, 2008, 41, 2800−2808.
26.Y. C. Kung, G. S. Liou, S. H. Hsiao, Synthesis and characterization of novel electroactive polyamides and polyimides with bulky 4-(1-adamantoxy)triphenylamine moieties. J. Polym. Sci. Part A: Polym. Chem., 2009, 47, 1740−1755.
27.W. Chen, Z. Zhou, T. Yang, R. Bei, Y. Zhang, S. Liu, Z. Chi, X. Chen, J. Xu, Synthesis and properties of highly organosoluble and low dielectric constant polyimides containing non-polar bulky triphenyl methane moiety. React. Funct. Polym., 2016, 108, 71–77.
28.H. Mao, S. Zhang, Synthesis, characterization and gas transport properties of novel poly(amine-imide)s containing tetraphenylmethane pendent groups. J. Mater. Chem. A, 2014, 2, 9835−9843.
29.S. Bisoi, A. K. Mandal, V. Padmanabhan, S. Banerjee, Aromatic polyamides containing trityl substituted triphenylamine: Gas transport properties and molecular dynamics simulations. J. Membr. Sci., 2017, 522, 77–90.
30.N. Yamazaki, M. Matsumoto, F. Higashi, Studies on reactions of the N-phosphonium salts of pyridines. XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts. J. Polym. Sci., Polym. Chem. Ed., 1975, 13, 1373–1380.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊