跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.132) 您好!臺灣時間:2025/11/29 23:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:龍富成
研究生(外文):Fu Cheng Long
論文名稱:超音波振動輔助碳纖維複合材料加工效益之研究
論文名稱(外文):Investigation of Ultrasonic Vibration Assisted Carbon Fiber Reinforced Plastics Machining Effciency
指導教授:蔡明義蔡明義引用關係
指導教授(外文):Ming Yi Tsai
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:82
中文關鍵詞:超音波輔助加工碳纖維複合材料CO2低溫冷卻
外文關鍵詞:Ultrasonic Assisted MachiningCarbon Fiber Reinforced PlasticsCO2 Low-Temperature Cooling
相關次數:
  • 被引用被引用:3
  • 點閱點閱:501
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:1
碳纖維具有輕質、高強度、高模數、耐化學腐蝕、熱膨脹係數低等特性,具取代金屬材料潛力,未來應用市場集中於汽車、航太、國防等重工業,碳纖維被納入未來趨勢下十大潛力材料之一。碳纖維是目前航太材料、運動器材、3C產品最常使用材料,近期汽車產業與風力發電也開始使用,但因碳纖維非等向性導致加工難度提升,如鑽削時發生脫層現象,用了超音波輔助僅有改善而無法完全克服脫層,要克服碳纖維鑽削脫層,需在碳纖維底部墊犧牲材,即可完全克服,但造成了加工成本與時間增加,銑削時因切削阻抗過大而導致表面纖維嚴重損毀,並造成纖維整片掀起以及內部纖維組織被拉出,加工時刀尖溫度過高導致碳纖維表面灼傷與樹脂溶解,故本研究藉由超音波輔助加工改善以上問題。
本研究主要區分兩個部分,第一部分為超音波輔助鑽削加工碳纖維,探討超音波振幅對出口品質的影響,並篩選出最佳振幅做後續單一振幅實驗,後續比較一般鑽削與超音波輔助鑽削出口品質與軸向推力影響,透過不同進給速度的比較,運用OM觀察出口品質與量測刀具磨耗。第二部分為超音波輔助銑削,主要探討振幅對表面粗糙度之影響、冷卻機制與刀具幾何外型對表面形貌與表面粗糙度有何影響,使用OM量測刀具磨耗、並觀察不同加工方式之切屑型態。
超音波輔助加工可以改善脫層現像、並降低軸向推力與降低刀具磨耗,但振幅過大會造成孔洞周圍許多毛邊與些微脫層,過小則沒有效果,在頻率25KHz搭配振幅5.76μm,主軸轉速3185rpm、主軸進給5mm/min可得較佳的出口品質,較快的進給速度可以大幅降低刀具磨耗,但脫層現象則非常嚴重。在銑削研究導入超音波輔助與高效立銑刀對表面品質有極大改善,使用四刃端銑刀搭配二氧化碳低溫冷卻表粗度達0.703μm,但刀具磨耗表現則沒有像微量潤滑一樣突出,無超音波輔助下使用空氣冷卻其結果大多不理想,另外導入超音波輔助確實改善切屑纏繞情形,切屑型態大多成片狀流動型切屑,以微量潤滑加工最為顯著。
Carbon fiber, having the characteristics of light weight, high strength, high modulus, chemical resistance, low coefficient of thermal expansion and so on, has the potential to replace metallic materials, with its application market focusing on heavy industries such as automobile, aerospace, national defense, etc. Currently carbon fiber, which is considered as one of the ten potential materials under the future trend, is the most used material for aerospace building materials, sports equipment, and 3C products, and is recently being used in the automobile industry and wind energy industry. However, Due to its anisotropy and its excellent characteristics, its processing is difficult. For example, delamination occurs while drilling, which could be reduced to some extent, but could not be completely overcome by using ultrasonic assistance. To overcome the said problem, we need to put sacrifice material under the carbon fiber, which, however, increases processing costs, and may cause severe damage to the fiber surface due to excessive cutting resistance, whereby a whole piece of fiber is peeled off and the internal fibrous tissue is pulled out. Additionally, excessively high tool nose temperature could burn the carbon fiber surface and dissolve the resin, which greatly deteriorates the surface quality, and this issue needs to be addressed.
This study was divided into two parts. The first part, concerned with ultrasonic-assisted drilling (UAD) of carbon fiber reinforced plastics (CFRP), investigated the influence of ultrasonic amplitude on export quality. The optimal amplitude was selected for subsequent experiments, where the axial thrust and export quality of general drilling and UAD were compared at different feed speeds. Finally an optical microscope was employed to determine the export quality and the measurement tool wear. The second part, concerned with ultrasonic-assisted milling (UAM), mainly explored the influence of amplitude on surface roughness, as well as the influence of three different cooling mechanisms and two different tool geometries on surface topography and surface roughness. Subsequently an optical microscope was used to measure the tool wear and to observe the cutting forms of different processing methods.
The results verified that ultrasound could reduce the delamination phenomenon, reduce axial thrust, and reduce tool wear. However, high-amplitude waves degraded the export quality, while low-amplitude waves were ineffective. Better export quality could be achieved at a frequency of 25 KHz, an amplitude of 5.76μm, a spindle speed of 3185rpm, and a feed speed of 5mm/min. A higher feed speed greatly reduced tool wear, but caused severe delamination. In terms of milling, employing ultrasound-assisted techniques and high-efficiency milling cutters could greatly improve the surface quality, where using a four-blade end mill and carbon dioxide-based low-temperature cooling could achieve a surface roughness of 0.703μm. However, as regards tool wear, they did not achieve as good an effect as does the MQL technique. Using air cooling without assistance of ultrasound mostly resulted in unsatisfactory results. In addition, with the introduction of ultrasound-assisted techniques, the winding problem caused by cutting was resolved, and segmental chips were mostly formed during machining, which was most significant for the MQL processing method.
誌謝 I
摘要 III
Abstract V
目錄 VIII
頁次 VIII
圖目錄 XII
表目錄 XIX
符號索引 XXI
第一章 緒論 1
1.1 前言 1
1.1.1 碳纖維特性 3
1.1.2 超音波輔助切削 5
1.2 文獻回顧 6
1.2.1超音波輔助加工相關文獻 6
1.2.2 複合材料相關文獻 15
1.2.3低溫切削相關文獻 23
1.3 研究動機與目的 27
1.4本文貢獻 28
1.5 論文架構 29
第二章 實驗理論 30
2.1 鑽削理論 30
2.1.1鑽頭各部位名稱 30
2.1.2鑽頭各角度名稱 31
2.1.3 鑽削相關公式 31
2.2銑削理論 32
2.2.1銑刀各部名稱 32
2.2.2銑削相關公式 34
2.3刀具材質 34
2.4 超音波輔助加工 36
2.4.1 超音波加工 36
2.4.2 迴轉超音波輔助加工 37
2.4.3橢圓振動切削 37
2.4.4 壓電效應 38
2.5二氧化碳冷卻 39
2.5.1超臨界流體 39
第三章 實驗內容 41
3.1 實驗設備 41
3.2 實驗材料 49
3.4 實驗規劃及進行步驟 52
3.4.1 超音波輔助鑽、銑削實驗步驟 52
3.4.2刀具振幅之量測 54
3.5 實驗參數 55
第四章 結果與討論 56
4.1 超音波輔助鑽削之結果 56
4.1.1超音波振幅大小對出口品質之影響 56
4.1.2有無超音波輔助差異比較 57
4.1.3超音波輔助對刀具磨耗之影響 59
4.1.4不同進給對刀具壽命之影響 59
4.2 超音波輔助銑削之結果 60
4.2.1 超音波振幅的篩選 61
4.2.2 不同冷卻機制於超音波輔助對表面品質之影響 62
4.2.3 刀具磨耗之探討 70
4.2.4切屑型態之探討 75
第五章 結論與未來展望 77
5.1 結論 77
5.2 未來展望 78
參考文獻 79
1.Rachid M’Saoubi, “High performance cutting of advanced aerospace alloys and composite materials”, CIRP Annals - Manufacturing Technology,2015.

2.隈部淳一郎,精密加工振動切削基礎的應用,實教出版株式會社,1979。

3.陳晟源,超音波輔助銑削加工之研究,國立虎尾科技大學碩士論文,2007年。

4.楊忠義,超音波振動輔助加工於玻璃材料加工研究,工程科技與教育學刊,第七卷,第一期,民國99年三月。

5.Y.S.Liao, “Feasibility study of the ultrasonic vibration assisted drilling of Inconel superalloy”,International Journal of Machine Tools and Manufacture Volume 47,Issues 12–13,October 2007,Pages 1988–1996.

6.林仲譚,鎳基合金Inconel 718銑削加工特性之研究,國立雲林科技大學,機械工程系碩士論文,民國96年7月。

7.柳世恆,以振動輔助劃切法加工硬脆材料之研究,國立成功大學機械工程研究所碩士論文,民國99年7月。

8.王世榮,具傾斜角度陶瓷材料之迴轉超音波加工,南亞技術學院機械系,南亞學報第30期。

9.Xingzhi Xiao, “Study on cutting force model in ultrasonic vibration assisted side grinding of zirconia ceramics”,International Journal of Machine Tools and Manufacture,Volume 104, May 2016, Pages 58-67.

10.K.L.KUO,“Rotary ultrasonic-assisted milling of brittle materials”, Transactions of Nonferrous Metals Society of China, Vol. 22, PP. 793-800, 2012.

11.Y.Zhaojun,“Study for increasing micro-drill reliability by vibrating drilling”, Reliability Engineering & System Safety, Vol. 61, Issue 3.

12.U.Heisel, “ultrasonic deep hole drilling in electrolytic copper Ecu 57”, CIRP Annals – Manufacturing Technology, Vol. 57, Issue 1.

13.A.Maurotto,“Experimental investigations on effects of frequency in ultrasonically-assisted end-milling of AISI 316L: A feasibility study” Ultrasonics, Vol. 65.

14.鄭富堯,超音波振動輔助加工玻璃材料之參數分析,國立聯合大學機械工程系碩士論文,2013年。

15.Wei Bai, “Numerical Modelling of Microstructure Evolution in Ti6Al4V Alloy by Ultrasonic Assisted Cutting”,Procedia CIRP,Volume 46, 2016, Pages 428-431.

16.林繼永,振動磨削技術應用於陶瓷材料加工之研究,國立雲林科技大學機械工程系碩士論文,民國93年。

17.黃朝威,超音波輔助Z軸扭轉撓性夾具對深孔鑽削影響之研究,國立臺灣海洋大學,機械與機電工程碩士論文,2011年。

18.楊仁豪,振動鑽削技術應用於鋁合金及複合材料加工之研究,國立雲林科技大學機械工程系碩士論文,2004年6月。

19.蔡志忠,微鑽針鑽削Inconel 718振動與磨耗特性之研究,國立高雄大學,電機工程學系-工業技術整合產業研發碩士論文,2010年。

20.楊佶勳,超音波輔助不鏽鋼30之微細孔鑽削與毛邊處理,國立台北科技大學,製造科技研究所碩士論文,民國103年。

21.B.Azarhoushang、J.Akbari, “Ultrasonic-assisted drilling of Inconel 738-LC,International Journal of Machine Tools and Manufacture”,Volume 47, Issues 7–8, June 2007, Pages 1027-1033.

22.王士榮、廖文賢,超音波加工與傳統加工切削條件對孔品質影響研究,南亞技術學院機械系,南亞學報第29期。

23.DeFu Liu、YongJun Tang, “A review of mechanical drilling for composite laminates”,Composite Structures,2011.

24.Kapil Kumar Goyal, “Prediction of Optimal Process Parameters for Abrasive Assisted Drilling of SS304”,Procedia Materials Science,Volume 6, 2014, Pages 1572-1579.

25.T.N.Valarmathi, “Measurement and analysis of thrust force in drilling of particle board (PB) composite panels”,Measurement,Volume 46, Issue 3, April 2013, Pages 1220-1230.

26.Aishah Najiah Dahnel, “The Effect of Varying Cutting Speeds on Tool Wear During Conventional and Ultrasonic Assisted Drilling (UAD) of Carbon Fibre Composite (CFC) and Titanium Alloy Stacks”,Procedia CIRP,Volume 46, 2016, Pages 420-423.

27.Oliver Pecat,“Influence of Milling Process Parameters on the Surface Integrity of CFRP”, Procedia CIRP,2012.

28.Oğuz Çolak, “Cutting Forces and 3D Surface Analysis of CFRP Milling with PCD Cutting Tools”, Procedia CIRP,2016.

29.T. Ishida, “Helical Milling of Carbon Fiber Reinforced Plastics Using Ultrasonic Vibration and Liquid Nitrogen”, Procedia CIRP,2014.

30.廖韋勛,複合材料CNC切削毛邊改善,逢甲大學機械與電腦輔助工程系碩士論文,民國103年8月。

31.任偉峰,低溫切削加工技術的發展及應用,天津大學機械工程系碩士論文,2016年。

32.K.Aslantas, “Performance evaluation of a hybrid cooling–lubrication system in micro-milling of Ti6Al4V alloy”, Procedia CIRP,2016.

33.O.Pereira,“Cryogenic and minimum quantity lubrication for an eco-efficiency turning of AISI 304”,Journal of Cleaner Production,2016.

34.Andres F. Clarens, “Feasibility of Metalworking Fluids Delivered in Supercritical Carbon Dioxide”,Journal of Manufacturing Processes,2006.

35.Ampara Aramcharoen, “Influence of Cryogenic Cooling on Tool Wear and Chip Formation in Turning of Titanium Alloy”, Procedia CIRP,2016.

36.洪良德,切削刀具學,高立圖書有限公司,台北縣,民國90年7月。

37.張瑞慶,非傳統加工,高立圖書有限公司,台北縣,民國92年8月。

38.馬春翔、胡德金,超聲波橢圓振動切削技術,上海交通大學機械與動力工程學院,機械工程學報第39卷第12期,2003年12月。

39.林洁琼、高曉萍,橢圓振動切削研究進展,長春工業大學機電工程學院,長春工業大學學報(自然科學版)第33卷第5期,2012年10月。

40.張嘉泰,超音波輔助銑削與拋光製程於模具鋼之研究,國立勤益科技大學機械工程系碩士論文,2016年1月。

41.曾育鍾,中央鑽孔碳纖維/聚二醚同複材積層版之高溫疲勞探討,國立中山大學機械工程系碩士論文,民國89年6月。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top