跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/22 21:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:阮氏鸞
研究生(外文):Nguyen Thi Loan
論文名稱:非對稱布拉格光柵濾波器之研製
論文名稱(外文):Fabrication of the Asymmetric Bragg Grating Coupler Filter
指導教授:莊為群
指導教授(外文):Chuang Wei Ching
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:37
中文關鍵詞:黃光微影製程濾波器布拉格光柵
外文關鍵詞:Holography interference techniquefilter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要

在本論中我們成功的以全像干涉技術.黃光微影製程和微成型等技術.製作出非對稱布拉格光柵濾波器.此結構以布拉格反射耦合理論為基礎.我們在兩條核心填入不同的導光層材料.此結構可以增加調製波長的範圍與選擇性.此非對稱布拉格光柵濾波器的光柵週期為500nm.深度為250nm.此原件傳輸特性量測.在1600nm中心波長位置有一16dB的濾波深度.


Abstract

In this work, we successfully fabricate an asymmetric Bragg grating coupler filter using holography interference technique, soft lithography and micro molding. The mechanism is based on Bragg reflection coupled mode theory. With different material on individual core, the tuning wavelength range could be extended. The asymmetric Bragg filter has grating period of 500nm and grating depth of 250nm. The transmission characteristic shows that the filter band centered at around 1600nm. The transmission dips of grating are about 16dB.


Table of Content

English abstract........................................i
Chinese abstract.......................................ii
Acknowledgement.......................................iii
Table of contents......................................iv
List of Figures.........................................v
Symbols ...............................................vi

Chapter 1 Introduction..................................1
1.1 Development of Optical Fiber communication..........1
1.2 Motivation..........................................1
1.3 Thesis structure....................................2

Chapter 2 Theory of the device..........................3
2.1 Theory of Optical waveguide.........................3
2.2 Optical waveguide component.........................5
2.3 PDMS................................................6
2.3.1 Feature of PDMS...................................6
2.3.2 Fabricating condition of PDMS.....................7

Chapter 3 Fabrication of the asymmetric Bragg grating coupler filter..........................................9
3.1 Holography..........................................9
3.2 Fabrication of Bragg Grating.......................10
3.2.1 Theory of fabricating Bragg grating..............10
3.2.2 The structure of Bragg grating interference......11
3.3 Fabrication of polymer grating.....................13
3.3.1 Photolithography fabrication of Bragg grating....13
3.3.2 Stamp molding of Bragg grating filters...........17

Chapter 4 Measurement..................................25
4.1 The Measurement setup..............................25
4.2 Schematic of experiment set up for transmission spectrum measurement...................................26
Chapter 5 Discussion of Experiment result..............28
Chapter 6 Conclusions and future research..............31

References

[1] Sheng-Kai, L. Yi-Fong, Ch. Guo-Ting, Ch. Weng-Feng, T. Wei-Ching, Ch. Chia-Lun, Ch. Chi-Ting, Ch. Chi-Ting, H, “The fabrication of the UV polymer Bragg grating on the D-shaped fiber” International Conference on Optical Photonics and Energy Engineering – OPEE, 2010.
[2] Wei-Ching, Ch. Chi-Ting, H. Yi-Ru, L. Ching-Kong, Ch. Ruey-Fang, Sh. Wei-Ching, W, “Transfusing mechanical force using a polymer optical grating sensor,” Optical Communications – OPT COMMUN, vol. 240, no. 12, pp. 3670-39679, 2006.
[3] Jau-Kun, K. Wen-Chung, Ch. Kao-Feng, Y. Wei-Ching, Ch, “Fabrication of thr nano-Bragg polymer waveguide by soft-lithography process,” Pacific Rim Conference on Lasers and Electro-Optics – CLEO/Pacific Rim, 2008.
[4] Jau-Kun, K. Wen-Chung, Ch. Kao-Feng, Y. Wei-Ching, Ch, “Periodical polymer grating structure with high aspect ratio,” Optical Communications – OPT COMMUN, vol. 240, no. 14, pp. 3940-3949, 2009.
[5] Wei-ching, Ch. An-Chen, L. Chi-Ting, H. “Using a micro-molding process to fabricate polymer wavelength filters,” Optical Communications – OPT COMMUN, vol. 281, no. 15, pp. 3985-3989, 2008.
[6] Wei-Ching, Ch. Chi-Ting, H. Ruey Fang, Sh, “Fabrication of polymer waveguide using a molding process,” Optical Engineering – OPT ENG, vol. 45, no. 10, 2006.
[7] Wei-Ching, Ch. Chia-Lun, Ch. Ruey Fang, Sh. Chi-Ting, H, “Fabrication of Diffraction Gratings on Polymers using a molding process,” Pacific Rim Conference on Lasers and Electro-Optics – CLEO/Pacific Rim, 2005.
[8] Kun-Yi, L. Yen-Juei, L. Wei-Ching, Ch. Wei-Yu, L, “Fabrication of polymeric Wavelength Filters Using a Micro-Molding Process,” Macromolecules, vol. 33, no. 8, pp. 3042-3049, 2000.
[9] Wei-Ching, Ch. Yu-Tai, H. Hui-Chi, L. An-Chen, L “Fabrication of an asymmetric Bragg coupler-based polymeric filter with a single-grating waveguide,” Optical Communications – OPT COMMUN, vol. 230, no. 11, pp. 4839-4879, 2010.
[10] Hunspeger, R. G, “Integrated optics theory and technology,” 6Ed, Springer, 2009.
[11] “Characterization of integrated optical waveguide devices,” Doctoral thesis/Dissertation (Doctor of Philosophy), 2008.
[12] Fleger, M. Neyer, A, “Microelectronic,” 2006.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top