|
[1]沈世宏,環保政策月刊,行政院環境保護署,102年 [2]林正芳,特定汙染源廢水中新興汙染物管制研究專案計畫,97年 [3]Mookherjee S., Shoen C., Cynamon M., In vitro activity of JPC 2067 alone and in combination with sulfamethoxazole against Nocardia species, Antimicrobial Agents and Chemotherapy, 2012, 56(2), 1133–1134. [4]Kolpin D.W., Furlong E.T., Meyer M.T., Thurman E.M., Zaugg S.D., Barber L.B , Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, Environmental Science and Technology, 1999-2000, 36(6),1202–1211. [5]Heberer T., Massmann G., Fanck B., Taute T., D¨unnbier U., Behaviour and redox sensitivity of antimicrobial residues during bank filtration, Chemosphere, 2008, 73(4), 451–460. [6]Luo Y., Mao D.Q., Rysz M., Zhou Q.X., Zhang H.J., Xu L., Trends in antibiotic resistance genes occurrence in the Haihe River, China. Environmental Science and Technology,2010, 44(19), 7220–7225 [7]Andreozzi R., Raffaele M., Nicklas P., Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment, Chemosphere, 2003, 50(10), 1319–1330. [8]Bueno M.J.M., Ag¨uera A., G´omez M.J., Hernando M.D., Garc´ıa-Reyes J.F., Fern´and ez-Alba A.R., Application of liquid chromatography/quadrupole-linear ion trap mass spectrometry and time-of-flight mass spectrometry to the determination of pharmaceuticals and related contaminants in wastewater, Analytical Chemistry, 2007, 79(24), 9372–9384. [9]Xu B.J., Mao D.Q., Luo Y., Xu L., Sulfamethoxazole biodegradation and biotransformation in the water-sediment system of a natural river. Bioresource Technology, 2011, 102(14), 7069–7076. [10]Zhang D., Pan B., Zhang H., Ning P., Xing B.S., Contribution of different sulfamethoxazole species to their overall adsorption on functionalized carbon nanotubes, Environmental Science and Technology, 2010, 44(10), 3806–3811. [11]Boreen A.L., Arnold W.A., McNeill K., Photodegradation of pharmaceuticals in the aquatic environment: A review, Aquatic Sciences, 2003, 65(4), 320–341. [12]Bueno M.J.M., Ag¨uera A., G´omez M.J., Hernando M.D., Garc´ıa-Reyes J.F., Fern´andez-Alba A.R., Application of liquid chromatography/quadrupole-linear ion trap mass spectrometry and time-of-flight mass spectrometry to the determination of pharmaceuticals and related contaminants in wastewater, Analytical Chemistry, 2007, 79(24), 9372–9384. [13]Radke M., Lauwigi C., Heinkele G., M¨urdter T.E., Letzel M., Fate of the antibiotic sulfamethoxazole and its two major human metabolites in a water sediment test, Environmental Science and Technology, 2009, 43(9), 3135–3141. [14]Trov´o A.G., Nogueira R.F.P., Ag¨uera A., Sirtori C., Fern´andez-Alba A.R., Photodegradation of sulfamethoxazole in various aqueous media: Persistence, toxicity and photoproducts assessment, Chemosphere, 2009, 77(10), 1292–1298. [15]Homem V., Santos L., Degradation and removal methods of antibiotics from aqueous matrices – A review. Journal of Environmental Management, 2011, 92(10), 2304–2347. [16]Abell´an M.N., Bayarri B., Gim´enez J., Costa J., Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2, Applied Catalysis B: Environmental, 2007, 74(3-4), 233– 241. [17]Ryan C.C., Tan D.T., Arnold W.A., Direct and indirect photolysis of sulfamethoxazole and trimethoprim in wastewater treatment plant effluent, Water Research, 2011, 45(3), 1280–1286. [18]Vione D., Khanra S., Das R., Minero C., Maurino V., Brigante M., Effect of dissolved organic compounds on the photodegradation of the herbicide MCPA in aqueous solution,Water Research, 2010, 44(20), 6053–6062. [19]Page S.E., Arnold W.A., McNeill K, Assessing the contribution of free hydroxyl radical in organic matter-sensitized photohydroxylation reactions. Environmental Science and Technology, 2011, 45(7), 2818–2825. [20]France J.L., King M.D., Lee-Taylor J., Hydroxyl (OH) radical production rates in snowpacks from photolysis of hydrogen peroxide (H2O2) and nitrate (NO-3 ). Atmospheric Environment, 2007, 41(26), 55 02–5509. [21]Wang H.Y., Niu J. F., Long X.X., He Y., Sonophotocatalytic degradation of methyl orange by nano-sized Ag/TiO2 particles in aqueous solutions. Ultrasonics Sonochemistry, 2008, 15(4), 386–392. [22]Li F., Xie Q., Li X.H., Li N., Chi P., Chen J.W., Hormone activity of hydroxylated polybrominated diphenyl ethers on human thyroid receptor-β: In vitro and in silico investigations. Environment Health Perspectives, 2010, 118(5), 602–606. [23]Thirumavalavan M., Hu Y.L., Lee J.F., Effects of humic acid and suspended soils on adsorption and photo-degradation of microcystin-LR onto samples from Taiwan reservoirs and rivers. Journal of Hazardous Materials, 2012, 217–218, 323–329. [24]Li Y., Zhang W., Li K.G., Yao Y., Niu J.F., Chen Y.S., Oxidative dissolution of polymer-coated CdSe/ZnS quantum dots under UV irradiation: Mechanisms and kinetics. Environment Pollution, 2012, 164, 259-266. [25]Li Y., Zhang W., Niu J.F., Chen Y.S., Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano, 2012b, 6(6): 5164–5173. [26]Niu J.F, Lin H., Xu J.L., Wu H., Li Y.Y., Electrochemical mineralization of perfluorocarboxylic acids (PFCAs) by Cedoped modified porous nanocrystalline PbO2 film electrode. Environmental Science and Technology, 2012, 46(18), 10191–10198. [27]Frank S.N., Bard A.J., Enhancing the crystallinity and surface roughness of sputtered TiO2 thin film by ZnO underlayer. J.Phys.Chem, 1977, 81, 1484-1486. [28]Delmas C., Alkali metal intercalation in layered oxides. Meterials Science and Engineering, 1989, B3, 97. [29]吳梅芳,貴金屬提高二氧化鈦對五氯酚於可見光吸收之研究,屏東科技大學環境工程與科學系, 95年. [30]Raether H., Surface Plasmons, Springer Tracts in Modern PhysicsSpringer, 1988, 111. [31]Zayats A.V., Smolyaninov I.I., Maradudin A.A., Nano-optics of surface plasmon polaritons, Phys. Reports ,2005,408, 131-314. [32]Schultz D.A., Plasmon resonant particles for biological detection, Current Opinion in Biotechnology, 2003, 14, 13. [33]Bohren C. and Huffman D., “Absorption and Scattering of Light by Small Particles”, Wiley, New York, 1983. [34]沈偉韌,趙文寬,賀飛等。化學進展。1998, 10, 349-361. [35]董慶華。感光材料與光化學。1993, 11, 76-81. [36]Gao Y.M., Lee W., Trehan R., Improvement of photocatalytic activity of titanium oxide by dispersion of Au on TiO2, Mater. Res. Bull.1991, 26, 1247-1254. [37]Bahanemann D., Bockelmann D., Goslich R., Mechanistic studies of water detoxification in illuminated TiO2 suspensions, Solar Ener. Mater. 1991, 24, 564-583. [38]Matthews R.W., A comparison of 254 nm and 350 nm excitation of TiO2 in simple photocatalytic reactors. J. Photochem. Photobiol. A: Chem, 1992, 66, 355-366. [39]Richard C., Matre A.M., Boule P., Photocatalytic transformation of 2,5-furandimethanol in aqueous ZnO suspensions,J. Photochem. Photobiol. A: Chem. 1992, 66, 225-234. [40]Conningham J., Srijaranai S., Sensitized photo-oxidations of dissolved alcohols in homogenous and heterogeneous systems Part 2. TiO2-sensitized photodehydrogenations of benzyl alcohol, J. Photochem. Photobiol. A: Chem.1991, 58, 361-371. [41]Pruden A.L., Oils D.F., Degradation of chloroform by photoassisted heterogeneous catalysis in dilute aqueous suspensions of titanium dioxide. Environ. Sci. Technol. 1983, 17, 628-631 [42]Harada H., Ueda T., Sakata T., Semiconductor effect on the selective photocatalytic reaction of .alpha.-hydroxycarboxylic acids, J.Phys. Chem.1989, 93, 1542-1548. [43]Harada H., Ueda T., Photocatalytic activity of ultra-fine rutile in methanol water solution and dependence of activity on particle size. Chem. Phys, Lett.1984, 106, 229-231. [44]Chan G.H., Zhao J., Hicks E.M., Schatz G.C., Van Duyne R.P., Plasmonic Properties of Copper Nanoparticles Fabricated by Nanosphere Lithography, Nano Lett. 2007, 7, 1947 – 1952. [45]Zhu H.Y., Ke X.B., Yang X.Z., Sarina S., Liu H.W., Angew. Reduction of nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet light, Chem. 2010, 122, 9851 – 9855; Angew. Chem. Int. Ed. 2010, 49, 9657 – 9661. [46]Marimuthu A., Zhang J.W., Linic S., Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidization state, Science 2013, 339, 1590 – 1593. [47]Sarina S., Zhu H.Y., Jaatinen E., Xiao Q., Liu H.W., Jia J.F., Chen C., Zhao J., Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures, J. Am. Chem. Soc. 2013, 135, 5793 – 5801. [48]Ghodselahi T., Zahrabi H., Heidari Saani M., Vesaghi M.A., CO Gas Sensor Properties of Cu@CuO Core-Shell Nanoparticles Based on Localized Surface Plasmon Resonance, J. Phys. Chem. C 2011, 115, 22126 – 22130. [49]Pedersen D.B., Wang S., Surface plasmon resonance spectra of 2.8 ± 0.5 nm diameter copper nanoparticles in both near and far fields, J. Phys. Chem. C, 2007, 111, 17493 – 17499. [50]Pastoriza-Santos I., S_nchez-Iglesias A., Rodr_guez-Gonzalez B., Liz-Marzan L. M., Aerobic synthesis of nanoplates with intense plasmon resonances, Small, 2009, 5, 440 – 443. [51]Geim A.K., Graphene: Materials in the Flatland, Angew. Chem. 2011, 123, 7100 – 7122; Angew. Chem. Int. Ed. 2011, 50, 6966 – 6985. [52]Song E.H., Wen Z., Jiang Q., CO catalytic oxidation on copper-embedded graphene, J. Phys. Chem. C ,2011, 115, 3678 – 3683. [53]Mondal P., Sinha A., Salam N., Roy A.S., Jana N.R., Islam S.M., Enhanced Catalytic Performance by Copper Nanoparticle-Graphene based Composite, RSC Adv. 2013, 3, 5615 – 5623. [54]Yan J.M., Wang Z.L., Wang H.L., Jiang Q., Rapid and energy-efficient synthesis of a graphene-CuCo hybrid as a high performance catalyst, J. Mater. Chem. 2012, 22, 10990 – 10993. [55]Guo X., Hao C., Jin G., Zhu H.Y., and Guo X.Y., Copper Nanoparticles on Graphene Support: An Efficient Photocatalyst for Coupling of Nitroaromatics in Visible Light,Joural of Angewandte Chemie,2014,53, 1973. [56]Brsikman R.N., A study of electrodeposited cuprous oxide photovoltaic cells, Sol. Energy Mater. Sol. Cells, 1992, 27, 361-368. [57]Poizot P., Laruelle S., Grugeon S., Dupont L., Taracon J.M., Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature,2000, 407 ,496-499. [58]Zhang J.T., Liu J.F., Li Y.D., Nearly monodisperse Cu2O and CuO nanospheres: Preparation and applications for sensitive gas sensors, Chem. Mater.2006, 18, 867-871. [59]Huang L., Peng F., Yu H., Wang H.J., Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion, Solid State Sci. 2009, 11, 129-138. [60]Hara M., Kondo T., Komoda M., Ikeda S., Shinohara K., Tanaka A., Kondo J.N., Domen K., Cu2O as a photocatalyst for overall water splitting under visible light irradiation, Chem. Commun.1998, 3, 357-358. [61]Domen K., Kondo J.N., Hara M., Takata T., Photo- and Mechano-Catalytic Overall Water Splitting Reactions to Form Hydrogen and Oxygen on Heterogeneous Catalysts, Bull. Chem. Soc. Jpn. 2000, 73, 1307-1331. [62]Liang, Z.H, and Zhu Y.J., Synthesis of uniformly sized Cu2O crystals with star-like and flower-like morphologies, Materials Letters, 2005, 59, 2423-2425. [63]He P., Shen X., and Gao H., Sized-controlled preparation of Cu2O octahedron nanocrystals and studies on their optical absorption, Joural of Colloid and Interface Science,2005, 284, 510-515. [64]Wei M., Lun N., Ma X., and Wen S., A simple solvothermal reduction route to copper and cuprous oxide, Materials Letters, 2007, 61, 2147-2150. [65]Song H.C., Cho Y.S., and Huh Y.D., Morphology-controlled synthesis of Cu2O microcrystal, Material Letters, 2008, 62, 1734-1736. [66]Zhang X., Wang G., Wu H., Zhang D., Zhang X., Li P., and Wu H., Synthesis and photocatalytic characterization of porous cuprous oxide octahedral, Materials Letters, 2008, 62, 4363-4365. [67]Qu Y., Li X., Chen G., Zhang H., and Chen Y., Synthesis of Cu2O nano-whiskers by a novel wet-chemical route, Material Letters, 2008, 62, 886-888. [68]Liu J., Wang S., Wang Q., and Geng B., Microwave chemical route to self-assembled quasi-spherical Cu2O microarchitectures and their gas-sensing properties, Sensors and Actuators B, 2009, 143, 253-260. [69]Wang Z., Wang H., Wang L., and Pan L., One-pot synthesis of single-crystalline Cu2O hollow nanotubes, Joural of physics and chemistry of solids, 2009, 70,719-722. [70]Zhao W., Fu W., Yang H., Tian C., Ge R., Wang C., Liu Z., Zhang Y., Li M., and Li Y., Shape-controlled synthesis of Cu2O microcrystals by electrochemical method, Applied surface science, 2010, 256, 2269-2275. [71]Zhang X., Wang G., Wu H., Zhang D., Zhang X., Li P., and Wu H., Synthesis and photocatalytic characterization of porous cuprous oxide octahedral, Material Letters, 2008, 62, 4363-4365. [72]Zhang H., Lv X.J., Li Y.M., Wang Y., Li J.H., P25-Graphene Composite as a High Performance Photocatalyst, ACS Nano, 2010, 4, 380–386. [73]Yang N.L., Zhai J., Wang D., Chen Y.S., Jiang L., Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells, ACS Nano, 2010, 4, 887–894. [74]Geim A.K., Novoselov K.S., The rise of graphene, Nat. Mater. 2007, 6, 183-191. [75]Shi X.W., Zong Y.Y., Qi Y.H., Xiao H., Xiao Z.Z., Hua Z., Nucleation Mechanism of Electrochemical Deposition of Cu on Reduced Graphene Oxide Electrodes, J. Phys. Chem. C, 2010, 114 , 11816–11821. [76]Chao X., Xin W., Li C.Y., Yu P.W., Fabrication of a graphene–cuprous oxide composite, J. Solid State Chem. 2009, 182 , 2486–2490. [77]Su Z.D., Verawati T., Hai M.F., Hui R.T., Dean C.S., Malini O., Subodh M., Jun W., Chorng H.S., Reduced Graphene Oxide Conjugated Cu2O Nanowire Mesocrystals for High-Performance NO2 Gas Sensor, J. Am. Chem. Soc.2012, 134, 4905–4917. [78]Novoselov K.S., Geim A.K., Electric field effect in atomically thin carbon films, Science, 2004, 306, 666. [79]Geim A.K., Novoselov K.S., The rise of graphene. Nat.Mater. 2007, 6, 183. [80]杨全红,吕伟,杨永岗,王茂章,自由态二维碳原子晶体——单层石墨烯,新型炭材料23卷(2008年)2期,97-102 [81]黄桂荣,石墨烯的合成与应用,炭素技术29卷(2009年)1期,35-38 [82]张盈利,刘开辉,王文龙,白雪冬,王恩哥,石墨烯的透射电子显微学研究,物理 38卷(2009年) 6期,401-408 [83]李旭,赵卫峰,陈国华,石墨烯的制备与表征研究,材料导报22卷(2008年)8期,48-51 [84]Kroto H.W., Health J.R., O’Brien S.C., CURL R.F. & SMALLE R.E., C60: Buckminsterfullerene. Nature, 1985, 318, 162-163. [85]Berger C., Song Z.M., Li T.B., Li X., Asmerom Y. Ogbazghi, Rui Feng, Zhenting Dai, Alexei N. Marchenkov, Edward H. Conrad, Phillip N. First, Walt A. de Heer, Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoeletronics. J Phys Chem B, 2004, 108, 19912-19916. [86]Berger C., Song Z.M., Li T.B., Wu X.S., Brown N., Naud C., Mayou D., Hass J., Marchenkov A.N., Conrad E.H., Phillip N.F., Walt A.H., Electron confinement and coherence in patterned epitaxial graphene. Science, 2006, 312, 1191-1196. [87]Hirata M., Gotou T., Horiuchi S., Fujiwara M., Ohba M., Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of particles. Carbon, 2004, 42, 2929-2937. [88]Stankovich S., Piner R.D., Chen X.Q., Wu N.G., Nguyen S.B.T., Ruoff R.S., Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem, 2006, 16, 155-158. [89]Li D., Muller M.B., Gilje S., Richard B.K. & Gordon G.W., Processable aqueous dispersions of graphene nanosheets. Nature Nanotech, 2008, 3, 101-105. [90]Nakajima T., Matsuo Y., Formation process and structure of graphite oxide. Carbon, 1994, 32, 469-475. [91]Park S., Ruoff R.S., Chemical methods for the production of graphenes. Nature Nanotech, 2009, 4, 217-224. [92]Hummers W.S., Offeman R.E., Preparation of graphitic oxide. J Am Chem Soc, 1958, 80, 1339. [93]Tang L.H., Wang Y., Li Y.M., Feng H., Lu J.and Li J., Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Films. Adv Funct Mater, 2009, 19, 2782-2789. [94]Oostinga J.B., Heersche H.B., Liu X.L., Alberto F.M. & Lieven M.K.V., Gate-induced insulating state in bilayer graphene devices. Nat Mater, 2008, 7, 151-157. [95]Nethravathi C, Rajamathi M., Chemically modified graphene sheets produced by the sovothermal reduction of colloidal dispersions of graphite oxide. Carbon, 2008, 46, 1994-1998. [96]Fan X.B., Peng W.C., Li Y., et al. Deoxygenation of Exfoliated Graphite Oxide under Alkaline Condition: A Green Route to Graphene Preparation. Adv Mater, 2008, 20, 4490-4493. [97]Williams G., Seger B., Kamat P.V., TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2008, 2, 1487-1491. [98]Hernandez Y., Nicolosi V., Lotya M., Blighe F.M., Sun Z., De S., McGovern I.T., Holland B., Byrne M., Gun'Ko Y.K., Boland J.J., Niraj P., Duesberg G., Krishnamurthy S., Goodhue R., Hutchison J., Scardaci V., Ferrari A.C. & Coleman J.N., High-yield production of graphene by liquid phase exfoliation of graphite. Nature Nanotech, 2008, 3, 563-568. [99]Li X., Zhang G., Bai X., Sun X., Wang X., Wang E. & Dai H., Highly conducting graphene sheets and Langmuir-Blodgett film, Nature Nanotech, 2008, 3, 538-542. [100]Räder H.J., Rouhanipour A., Talarico A.M., Palermo V., Samorì P. and Müllen K., Processing of giant graphene molecules by soft-landing mass spectrometry. Nature Mater, 2006, 5, 276-280. [101]Yang X.Y., Dou X., Rouhanipour A., Zhi L., Rader H.S., Mullen K., Two-dimensional graphene nanoribbons. J Am Chem Soc, 2008,130, 4216-4217. [102]Cai J.M., Ruffieux P., Jaafar R., et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 2010, 466, 470-473. [103]Sutter P.W., Flege J.I., Sutter E.A., Epitaxial graphene on ruthenium. Nature Mater, 2008, 7, 406-411. [104]Coraux J., Ndiaye A.T., Busse C., et al. Structural coherency of graphene on Ir(111).Nano Lett, 2008, 8, 565-570. [105]Howard J.B., Mickinnon J.T., Makarovsky Y., et al. Fullerenes C60 and C70 in flame. Nature, 1991, 352, 139-141. [106]Howard J.B., Carbon shells in flame. Nature, 1994,370,603. [107]Ando Y., Zhao X., Ohkohchi M., Production of petal-like graphite sheets by hydrogen arc discharge. Carbon, 1997, 35, 153-158. [108]Baquero F., Martınez J.L., Canton R., Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol.2008, 19 (3), 260–265. [109]Jiao S.J., Zheng S.R., Yin D.Q., Wang L.H., Chen L.Y., Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria, Chemosphere, 2008, 73 (3), 377–382. [110]Vasconcelos T.G., Henriques D.M., Konig A., Martins A.F., Kummerer K., Photo-degradation of the antimicrobial ciprofloxacin at high pH: identification and biodegradability assessment of the primary by-products, Chemosphere, 2009, 76, 487–493. [111]Elsellami L., Chartron V., Vocanson F., Conchon P., Felix C., Guillard C., Retailleau L., Houas A., Coupling process between solid–liquid extraction of amino acids by calixarenes and photocatalytic degradation J. Hazard. Mater. 2009, 166, 1195–1200. [112]Palominos R., Freer J., Mondaca M.A., Mansilla H.D., Evidence for hole participation during the photocatalytic oxidation of the antibiotic flumequine, J. Photochem. Photobiol. A.Chem. 2008, 193, 139–145. [113]Arana J., Herrera Melian J.A., Dona Rodriguez J.M., Gonzalez Diaz O., Viera A., Perez Pena J., Marrero Sosa P.M., Espino Jimenez V., TiO2-photocatalysis as a tertiary treatment of naturally treated wastewater, Catal. Today, 2002, 76, 279–289. [114]Wang H.J., Li J., Quan X., Wu Y., Increased activity of phosphatase PP2A in the presence of the PlA2 polymorphism of αIIbβ3, Appl. Catal. B: Environ.2008, 83, 72–77. [115]Wan L., Li J.F., Feng J.Y., Sun W., Mao Z.Q., Improved optical response and photocatalysis for N-doped titanium oxide (TiO2) films prepared by oxidation of TiN, Appl. Surf. Sci. 2007, 253, 4764–4767. [116]Shen X.T., Zhu L.H., Li J., Tang H.Q., Synthesis of molecular imprinted polymer coated photocatalysts with high selectivity, Chem. Commun. 2007, 1163–1165. [117]Rizzo L., Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment, Water Research, 2011, 45, 4311-4340. [118]Sacco O., Stoller M., Vaiano V., Ciambelli P., Chianese A., Sannino D., Photocatalytic degradation of organic dyes under visible light on N-doped TiO2 photocatalysts,Interna-ional Journal of Photoenergy ,2012. [119]Liu Y., Li J., Qiu X., Burda C., Novel TiO2 anocatalysts for wastewater purification: tapping energy from the sun, Water Science and Technology, 2006, 54, 47-54. [120]Alrousan D.M.A., Polo-López M.I., Dunlop P.S.M., Fernández-Ibá˜nez P., Byrne J.A., Solar photocatalytic disinfection of water with immobilised titanium dioxide in re-circulating flow CPC reactors, Applied Catalysis B: Environmental, 2012, 128, 126-134. [121]Von G.U., Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine, Water Research, 2003, 37, 1469–1487. [122]Rizzo L., Manaia C., Merlin C., Schwartz T., Dagot C., Ploy M.C., Michael I., Fatta-Kassinos D., Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment, Science of the Total Environment, 2013, 447, 345–360. [123]Fernandez P., Blanco J., Sichel C., Malato S., Water disinfection by solar photocatalysis using compound parabolic collectors ,Catalysis Today, 2005, 101, 345–352. [124]Rizzo L., Inactivation and injury of total coliform bacteria after primary disinfection of drinking water by TiO2 photocatalysis, Journal of Hazardous Materials, 2009, 165, 48–51. [125]Richardson S.D., Thruston A.D., Collette T.W., Patterson K.S., Lykins B.W., Ireland J.C., Identification of TiO2/UV Disinfection Byproducts in Drinking Water, Environmental Science & Technology,1996, 30, 3327–3334. [126]Malato S., Fernandez-Ibanez P., Maldonado M.I., Blanco J., Gernjak W., Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends, Catalysis Today, 2009, 147, 1–59. [127]Ren P.G., Yan D.X., Ji X., Chen T. and Li Z.M., Temperature dependence of graphene oxide reduced by hydrazine hydrate, Nanotechnology, 2011, 22 055705 [128]Chen C.W., Liu Z.T., Zhang Y.Z., Yea J.S. and Lee C.L., Sonoelectrochemical intercalation and exfoliation for the preparation of defective graphene sheets and their application as nonenzymatic H2O2 sensors and oxygen reduction catalysts, RSC Adv., 2015, 5, 21988-21998. [129]Abulizi A., Yang G.H., Zhu J.J., One-step simple sonochemical fabrication and photocatalytic properties of Cu2O–rGO composites, Ultrasonics Sonochemistry, 2014, 21, 129-135. [130]Wu T., Gao J., Xu X., Wang W., Gao C. and Qiu H., A new rapid chemical route to prepare reduced graphene oxide using copper metal nanoparticles, Nanotechnology, 2013, 24, 215604. [131]Li B., Liu T., Hu L., Wang Y., A facile one-pot synthesis of Cu2O/RGO nanocomposite for removal of organic pollutant, Journal of Physics and Chemistry of Solids, 2013, 74, 635-640. [132]Stankovich S., Dikin D.A. , Piner R.D. , Kohlhaas K.A., Kleinhames A., Jia Y., Wu Y., Nguyen S.B.T., Ruoff R.S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,carbon, 2007, 45, 1558-1565. [133]朱宏偉,徐志平,謝丹,石墨烯-結構、製備方法與性能表徵,2011,25-27 [134]Shown I., Hsu H.C., Chang Y.C., Lin C.H., Roy P.K., Ganguly A., Wang C.H., Chang J.K., Wu C.I., Chen L.C.and Chen K.H., Highly Efficient Visible Light Photocatalytic Reduction of CO2 to Hydrocarbon Fuels by Cu-Nanoparticle Decorated Graphene Oxide,nano letter, 2014, 14, 6097−6103.
|