跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:魏宇劭
研究生(外文):Wei,Yu-Shao
論文名稱:合成氧化亞銅/石墨烯、銅/石墨烯光觸媒應用於可見光降解新興汙染物
論文名稱(外文):Synthesis of Cu2O/graphene and Cu/graphene Photocatalysts for Degrading Emerging Contaminants in Visible Light
指導教授:劉守恒劉守恒引用關係
指導教授(外文):Liu,Shou-Heng
口試委員:簡繹驥郭仲文
口試委員(外文):Jian,Yi-JiGuo,Zhong-Wen
口試日期:2015-07-27
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系博碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:90
中文關鍵詞:石墨烯氧化亞銅磺胺甲基噁唑光觸媒局域性表面電漿共振效應
外文關鍵詞:graphenecuprous oxidecoppersulfamethoxazolephotocatalystLocalized Surface Plasmon Resonance effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:510
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
近年來新興汙染物對環境與人體之威脅與日俱增,以傳統的處理技術無法有效去除,因此,本研究之目標為製備於可見光下能有效降解新興汙染物(例如抗生素磺胺甲基噁唑(sulfamethoxazole, SMX)之光觸媒。利用簡易濕式化學法製備光觸媒,以五水合硫酸銅及氧化石墨烯(graphene oxide, GO)為前驅物,抗壞血酸為還原劑,先合成出氧化亞銅/石墨烯光觸媒,再於500℃下通入氫氣還原以製備出銅/石墨烯光觸媒,藉由XRD、TEM、UV-vis、Raman、XPS等分析儀器進行物化特性分析。並分別將氧化亞銅/石墨烯光觸媒與銅/石墨烯光觸媒於可見光的條件下降解SMX,探討其光催化活性。 光催化降解實驗結果顯示,以添加80 mg石墨烯於奈米銅觸媒(B80)有最佳的降解率,可能是摻雜石墨烯之銅奈米顆粒所造成的局域性表面電漿共振效應,有助於提升光觸媒之可見光光催化活性。

Recently, the sulfamethoxazole (SMX), one of the emerging contaminants in surface waters, has been detected at high frequency. SMX in the water system was a potential risk to the ecosystem balance. Unfortunately, the traditional treatment techniques can not remove SMX completely. Thus, the objective of this study is to synthesize an efficient photocatalyst for degrading emerging contaminants under visible light.The Cu2O/graphene photocatalysts were synthesized via a simple wet-chemical method by using CuSO4·5H2O and graphene oxide as precursors and ascorbic acid as reducing agent. Then, the Cu/graphene photocatalysts were obtained by reducing the Cu2O/graphene photocatalysts in H2 at 500℃. A variety of different spectroscopic and analytical techniques, such as X-ray diffraction, Raman scattering spectroscopy, UV-visible spectroscopy, X-ray photoelectron spectroscopy and transmission electron microscopy were used to characterize the physical properties of materials. Photodegrading SMX by these photocatalysts under visible light was also examined in this study.
In the photodegrading experiments, it was found that the Cu/graphene photocatalysts sample (B80) has the superior visible-light response of 80% removal ratio which may be confirmed that a localized surface plasmon resonance effect of copper nanoparticles and doping graphene can enhance the photocatalytic activity under visible light irradiation.

中文摘要 I
Abstract II
誌謝 IV
總目錄 V
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1-1前言 1
1-2研究動機 1
第二章 文獻回顧 2
2-1新興汙染物之簡介 2
2-1.1新興汙染物之概述 2
2-1.2磺胺甲基噁唑之特性 3
2-2光觸媒簡介 5
2-2.1 光觸媒的發展 5
2-2.2光催化的原理 6
2-2.3表面電漿子 8
2-2.4光觸媒的應用 9
2-3影響光催化反應效率之因素 9
2-3.1催化劑 9
2-3.2光源與光強 10
2-3.3有機物濃度 10
2-3.4 pH值 11
2-4銅 12
2-4.1銅之基本性質 12
2-4.2銅之改質 12
2-5氧化亞銅 13
2-5.1氧化亞銅之基本性質 13
2-5.3氧化亞銅之改質 16
2-6石墨烯 17
2-6.1石墨烯之基本性質 17
2-6.2石墨烯之製備方法 19
2-7光觸媒於新興汙染物的應用 25
第三章 實驗方法與步驟 26
3-1實驗藥品 26
3-2實驗儀器 27
3-3實驗步驟 28
3-3.1製備氧化石墨烯 28
3-3.2合成氧化亞銅/石墨烯光觸媒 30
3-3.3製備銅/石墨烯光觸媒 32
3-3.4光觸媒於可見光下降解新興汙染物 34
3-4材料特性分析儀 35
第四章 結果與討論 38
4-1氧化亞銅/石墨烯光觸媒之物理特性分析 38
4-1.1 XRD分析 38
4-1.2 TEM分析 41
4-1.3 UV-vis分析 43
4-1.4 XPS分析 44
4-1.5 Raman分析 48
4-2 氧化亞銅/石墨烯光觸媒可見光降解實驗 51
4-2.1 揮發與無觸媒光解實驗 51
4-2.2 吸附實驗 53
4-2.3 可見光降解實驗 54
4-2.4推估反應速率常數 55
4-2.5光觸媒重複耐久實驗 57
4-3 銅/石墨烯光觸媒之物理特性分析 60
4-3.1 XRD分析 60
4-3.2 TEM分析 63
4-3.3 UV-vis分析 65
4-3.4 XPS分析 66
4-3.5 Raman分析 70
4-4銅/石墨烯光觸媒可見光降解實驗 72
4-4.1吸附實驗 72
4-4.2可見光降解實驗 72
4-4.3 推估反應速率常數 74
4-4.4 光觸媒重複耐久實驗 76
第五章 結論 79
參考文獻 80
自傳 90


[1]沈世宏,環保政策月刊,行政院環境保護署,102年
[2]林正芳,特定汙染源廢水中新興汙染物管制研究專案計畫,97年
[3]Mookherjee S., Shoen C., Cynamon M., In vitro activity of JPC 2067 alone and in combination with sulfamethoxazole against Nocardia species, Antimicrobial Agents and Chemotherapy, 2012, 56(2), 1133–1134.
[4]Kolpin D.W., Furlong E.T., Meyer M.T., Thurman E.M., Zaugg S.D., Barber L.B , Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, Environmental Science and Technology, 1999-2000, 36(6),1202–1211.
[5]Heberer T., Massmann G., Fanck B., Taute T., D¨unnbier U., Behaviour and redox sensitivity of antimicrobial residues during bank filtration, Chemosphere, 2008, 73(4), 451–460.
[6]Luo Y., Mao D.Q., Rysz M., Zhou Q.X., Zhang H.J., Xu L., Trends in antibiotic resistance genes occurrence in the Haihe River, China. Environmental Science and Technology,2010, 44(19), 7220–7225
[7]Andreozzi R., Raffaele M., Nicklas P., Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment, Chemosphere, 2003, 50(10), 1319–1330.
[8]Bueno M.J.M., Ag¨uera A., G´omez M.J., Hernando M.D., Garc´ıa-Reyes J.F., Fern´and ez-Alba A.R., Application of liquid chromatography/quadrupole-linear ion trap mass spectrometry and time-of-flight mass spectrometry to the determination of pharmaceuticals and related contaminants in wastewater, Analytical Chemistry, 2007, 79(24), 9372–9384.
[9]Xu B.J., Mao D.Q., Luo Y., Xu L., Sulfamethoxazole biodegradation and biotransformation in the water-sediment system of a natural river. Bioresource Technology, 2011, 102(14), 7069–7076.
[10]Zhang D., Pan B., Zhang H., Ning P., Xing B.S., Contribution of different sulfamethoxazole species to their overall adsorption on functionalized carbon nanotubes, Environmental Science and Technology, 2010, 44(10), 3806–3811.
[11]Boreen A.L., Arnold W.A., McNeill K., Photodegradation of pharmaceuticals in the aquatic environment: A review, Aquatic Sciences, 2003, 65(4), 320–341.
[12]Bueno M.J.M., Ag¨uera A., G´omez M.J., Hernando M.D., Garc´ıa-Reyes J.F., Fern´andez-Alba A.R., Application of liquid chromatography/quadrupole-linear ion trap mass spectrometry and time-of-flight mass spectrometry to the determination of pharmaceuticals and related contaminants in wastewater, Analytical Chemistry, 2007, 79(24), 9372–9384.
[13]Radke M., Lauwigi C., Heinkele G., M¨urdter T.E., Letzel M., Fate of the antibiotic sulfamethoxazole and its two major human metabolites in a water sediment test, Environmental Science and Technology, 2009, 43(9), 3135–3141.
[14]Trov´o A.G., Nogueira R.F.P., Ag¨uera A., Sirtori C., Fern´andez-Alba A.R., Photodegradation of sulfamethoxazole in various aqueous media: Persistence, toxicity and photoproducts assessment, Chemosphere, 2009, 77(10), 1292–1298.
[15]Homem V., Santos L., Degradation and removal methods of antibiotics from aqueous matrices – A review. Journal of Environmental Management, 2011, 92(10), 2304–2347.
[16]Abell´an M.N., Bayarri B., Gim´enez J., Costa J., Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2, Applied Catalysis B: Environmental, 2007, 74(3-4), 233– 241.
[17]Ryan C.C., Tan D.T., Arnold W.A., Direct and indirect photolysis of sulfamethoxazole and trimethoprim in wastewater treatment plant effluent, Water Research, 2011, 45(3), 1280–1286.
[18]Vione D., Khanra S., Das R., Minero C., Maurino V., Brigante M., Effect of dissolved organic compounds on the photodegradation of the herbicide MCPA in aqueous solution,Water Research, 2010, 44(20), 6053–6062.
[19]Page S.E., Arnold W.A., McNeill K, Assessing the contribution of free hydroxyl radical in organic matter-sensitized photohydroxylation reactions. Environmental Science and Technology, 2011, 45(7), 2818–2825.
[20]France J.L., King M.D., Lee-Taylor J., Hydroxyl (OH) radical production rates in snowpacks from photolysis of hydrogen peroxide (H2O2) and nitrate (NO-3 ). Atmospheric Environment, 2007, 41(26), 55 02–5509.
[21]Wang H.Y., Niu J. F., Long X.X., He Y., Sonophotocatalytic degradation of methyl orange by nano-sized Ag/TiO2 particles in aqueous solutions. Ultrasonics Sonochemistry, 2008, 15(4), 386–392.
[22]Li F., Xie Q., Li X.H., Li N., Chi P., Chen J.W., Hormone activity of hydroxylated polybrominated diphenyl ethers on human thyroid receptor-β: In vitro and in silico investigations. Environment Health Perspectives, 2010, 118(5), 602–606.
[23]Thirumavalavan M., Hu Y.L., Lee J.F., Effects of humic acid and suspended soils on adsorption and photo-degradation of microcystin-LR onto samples from Taiwan reservoirs and rivers. Journal of Hazardous Materials, 2012, 217–218, 323–329.
[24]Li Y., Zhang W., Li K.G., Yao Y., Niu J.F., Chen Y.S., Oxidative dissolution of polymer-coated CdSe/ZnS quantum dots under UV irradiation: Mechanisms and kinetics. Environment Pollution, 2012, 164, 259-266.
[25]Li Y., Zhang W., Niu J.F., Chen Y.S., Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano, 2012b, 6(6): 5164–5173.
[26]Niu J.F, Lin H., Xu J.L., Wu H., Li Y.Y., Electrochemical mineralization of perfluorocarboxylic acids (PFCAs) by Cedoped modified porous nanocrystalline PbO2 film electrode. Environmental Science and Technology, 2012, 46(18), 10191–10198.
[27]Frank S.N., Bard A.J., Enhancing the crystallinity and surface roughness of sputtered TiO2 thin film by ZnO underlayer. J.Phys.Chem, 1977, 81, 1484-1486.
[28]Delmas C., Alkali metal intercalation in layered oxides. Meterials Science and Engineering, 1989, B3, 97.
[29]吳梅芳,貴金屬提高二氧化鈦對五氯酚於可見光吸收之研究,屏東科技大學環境工程與科學系, 95年.
[30]Raether H., Surface Plasmons, Springer Tracts in Modern PhysicsSpringer, 1988, 111.
[31]Zayats A.V., Smolyaninov I.I., Maradudin A.A., Nano-optics of surface plasmon polaritons, Phys. Reports ,2005,408, 131-314.
[32]Schultz D.A., Plasmon resonant particles for biological detection, Current Opinion in Biotechnology, 2003, 14, 13.
[33]Bohren C. and Huffman D., “Absorption and Scattering of Light by Small Particles”, Wiley, New York, 1983.
[34]沈偉韌,趙文寬,賀飛等。化學進展。1998, 10, 349-361.
[35]董慶華。感光材料與光化學。1993, 11, 76-81.
[36]Gao Y.M., Lee W., Trehan R., Improvement of photocatalytic activity of titanium oxide by dispersion of Au on TiO2, Mater. Res. Bull.1991, 26, 1247-1254.
[37]Bahanemann D., Bockelmann D., Goslich R., Mechanistic studies of water detoxification in illuminated TiO2 suspensions, Solar Ener. Mater. 1991, 24, 564-583.
[38]Matthews R.W., A comparison of 254 nm and 350 nm excitation of TiO2 in simple photocatalytic reactors. J. Photochem. Photobiol. A: Chem, 1992, 66, 355-366.
[39]Richard C., Matre A.M., Boule P., Photocatalytic transformation of 2,5-furandimethanol in aqueous ZnO suspensions,J. Photochem. Photobiol. A: Chem. 1992, 66, 225-234.
[40]Conningham J., Srijaranai S., Sensitized photo-oxidations of dissolved alcohols in homogenous and heterogeneous systems Part 2. TiO2-sensitized photodehydrogenations of benzyl alcohol, J. Photochem. Photobiol. A: Chem.1991, 58, 361-371.
[41]Pruden A.L., Oils D.F., Degradation of chloroform by photoassisted
heterogeneous catalysis in dilute aqueous suspensions of titanium dioxide. Environ. Sci. Technol. 1983, 17, 628-631
[42]Harada H., Ueda T., Sakata T., Semiconductor effect on the selective photocatalytic reaction of .alpha.-hydroxycarboxylic acids, J.Phys. Chem.1989, 93, 1542-1548.
[43]Harada H., Ueda T., Photocatalytic activity of ultra-fine rutile in methanol water solution and dependence of activity on particle size. Chem. Phys, Lett.1984, 106, 229-231.
[44]Chan G.H., Zhao J., Hicks E.M., Schatz G.C., Van Duyne R.P., Plasmonic Properties of Copper Nanoparticles Fabricated by Nanosphere Lithography, Nano Lett. 2007, 7, 1947 – 1952.
[45]Zhu H.Y., Ke X.B., Yang X.Z., Sarina S., Liu H.W., Angew. Reduction of nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet light, Chem. 2010, 122, 9851 – 9855; Angew. Chem. Int. Ed. 2010, 49, 9657 – 9661.
[46]Marimuthu A., Zhang J.W., Linic S., Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidization state, Science 2013, 339, 1590 – 1593.
[47]Sarina S., Zhu H.Y., Jaatinen E., Xiao Q., Liu H.W., Jia J.F., Chen C., Zhao J., Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures, J. Am. Chem. Soc. 2013, 135, 5793 – 5801.
[48]Ghodselahi T., Zahrabi H., Heidari Saani M., Vesaghi M.A., CO Gas Sensor Properties of Cu@CuO Core-Shell Nanoparticles Based on Localized Surface Plasmon Resonance, J. Phys. Chem. C 2011, 115, 22126 – 22130.
[49]Pedersen D.B., Wang S., Surface plasmon resonance spectra of 2.8 ± 0.5 nm diameter copper nanoparticles in both near and far fields, J. Phys. Chem. C, 2007, 111, 17493 – 17499.
[50]Pastoriza-Santos I., S_nchez-Iglesias A., Rodr_guez-Gonzalez B., Liz-Marzan L. M., Aerobic synthesis of nanoplates with intense plasmon resonances, Small, 2009, 5, 440 – 443.
[51]Geim A.K., Graphene: Materials in the Flatland, Angew. Chem. 2011, 123, 7100 – 7122; Angew. Chem. Int. Ed. 2011, 50, 6966 – 6985.
[52]Song E.H., Wen Z., Jiang Q., CO catalytic oxidation on copper-embedded graphene, J. Phys. Chem. C ,2011, 115, 3678 – 3683.
[53]Mondal P., Sinha A., Salam N., Roy A.S., Jana N.R., Islam S.M., Enhanced Catalytic Performance by Copper Nanoparticle-Graphene based Composite, RSC Adv. 2013, 3, 5615 – 5623.
[54]Yan J.M., Wang Z.L., Wang H.L., Jiang Q., Rapid and energy-efficient synthesis of a graphene-CuCo hybrid as a high performance catalyst, J. Mater. Chem. 2012, 22, 10990 – 10993.
[55]Guo X., Hao C., Jin G., Zhu H.Y., and Guo X.Y., Copper Nanoparticles on Graphene Support: An Efficient Photocatalyst for Coupling of Nitroaromatics in Visible Light,Joural of Angewandte Chemie,2014,53, 1973.
[56]Brsikman R.N., A study of electrodeposited cuprous oxide photovoltaic cells, Sol. Energy Mater. Sol. Cells, 1992, 27, 361-368.
[57]Poizot P., Laruelle S., Grugeon S., Dupont L., Taracon J.M., Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature,2000, 407 ,496-499.
[58]Zhang J.T., Liu J.F., Li Y.D., Nearly monodisperse Cu2O and CuO nanospheres: Preparation and applications for sensitive gas sensors, Chem. Mater.2006, 18, 867-871.
[59]Huang L., Peng F., Yu H., Wang H.J., Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion, Solid State Sci. 2009, 11, 129-138.
[60]Hara M., Kondo T., Komoda M., Ikeda S., Shinohara K., Tanaka A., Kondo J.N., Domen K., Cu2O as a photocatalyst for overall water splitting under visible light irradiation, Chem. Commun.1998, 3, 357-358.
[61]Domen K., Kondo J.N., Hara M., Takata T., Photo- and Mechano-Catalytic Overall Water Splitting Reactions to Form Hydrogen and Oxygen on Heterogeneous Catalysts, Bull. Chem. Soc. Jpn. 2000, 73, 1307-1331.
[62]Liang, Z.H, and Zhu Y.J., Synthesis of uniformly sized Cu2O crystals with star-like and flower-like morphologies, Materials Letters, 2005, 59, 2423-2425.
[63]He P., Shen X., and Gao H., Sized-controlled preparation of Cu2O octahedron nanocrystals and studies on their optical absorption, Joural of Colloid and Interface Science,2005, 284, 510-515.
[64]Wei M., Lun N., Ma X., and Wen S., A simple solvothermal reduction route to copper and cuprous oxide, Materials Letters, 2007, 61, 2147-2150.
[65]Song H.C., Cho Y.S., and Huh Y.D., Morphology-controlled synthesis of Cu2O microcrystal, Material Letters, 2008, 62, 1734-1736.
[66]Zhang X., Wang G., Wu H., Zhang D., Zhang X., Li P., and Wu H., Synthesis and photocatalytic characterization of porous cuprous oxide octahedral, Materials Letters, 2008, 62, 4363-4365.
[67]Qu Y., Li X., Chen G., Zhang H., and Chen Y., Synthesis of Cu2O nano-whiskers by a novel wet-chemical route, Material Letters, 2008, 62, 886-888.
[68]Liu J., Wang S., Wang Q., and Geng B., Microwave chemical route to self-assembled quasi-spherical Cu2O microarchitectures and their gas-sensing properties, Sensors and Actuators B, 2009, 143, 253-260.
[69]Wang Z., Wang H., Wang L., and Pan L., One-pot synthesis of single-crystalline Cu2O hollow nanotubes, Joural of physics and chemistry of solids, 2009, 70,719-722.
[70]Zhao W., Fu W., Yang H., Tian C., Ge R., Wang C., Liu Z., Zhang Y., Li M., and Li Y., Shape-controlled synthesis of Cu2O microcrystals by electrochemical method, Applied surface science, 2010, 256, 2269-2275.
[71]Zhang X., Wang G., Wu H., Zhang D., Zhang X., Li P., and Wu H., Synthesis and photocatalytic characterization of porous cuprous oxide octahedral, Material Letters, 2008, 62, 4363-4365.
[72]Zhang H., Lv X.J., Li Y.M., Wang Y., Li J.H., P25-Graphene Composite as a High Performance Photocatalyst, ACS Nano, 2010, 4, 380–386.
[73]Yang N.L., Zhai J., Wang D., Chen Y.S., Jiang L., Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells, ACS Nano, 2010, 4, 887–894.
[74]Geim A.K., Novoselov K.S., The rise of graphene, Nat. Mater. 2007, 6, 183-191.
[75]Shi X.W., Zong Y.Y., Qi Y.H., Xiao H., Xiao Z.Z., Hua Z., Nucleation Mechanism of Electrochemical Deposition of Cu on Reduced Graphene Oxide Electrodes, J. Phys. Chem. C, 2010, 114 , 11816–11821.
[76]Chao X., Xin W., Li C.Y., Yu P.W., Fabrication of a graphene–cuprous oxide composite, J. Solid State Chem. 2009, 182 , 2486–2490.
[77]Su Z.D., Verawati T., Hai M.F., Hui R.T., Dean C.S., Malini O., Subodh M., Jun W., Chorng H.S., Reduced Graphene Oxide Conjugated Cu2O Nanowire Mesocrystals for High-Performance NO2 Gas Sensor, J. Am. Chem. Soc.2012, 134, 4905–4917.
[78]Novoselov K.S., Geim A.K., Electric field effect in atomically thin carbon films, Science, 2004, 306, 666.
[79]Geim A.K., Novoselov K.S., The rise of graphene. Nat.Mater. 2007, 6, 183.
[80]杨全红,吕伟,杨永岗,王茂章,自由态二维碳原子晶体——单层石墨烯,新型炭材料23卷(2008年)2期,97-102
[81]黄桂荣,石墨烯的合成与应用,炭素技术29卷(2009年)1期,35-38
[82]张盈利,刘开辉,王文龙,白雪冬,王恩哥,石墨烯的透射电子显微学研究,物理 38卷(2009年) 6期,401-408
[83]李旭,赵卫峰,陈国华,石墨烯的制备与表征研究,材料导报22卷(2008年)8期,48-51
[84]Kroto H.W., Health J.R., O’Brien S.C., CURL R.F. & SMALLE R.E., C60: Buckminsterfullerene. Nature, 1985, 318, 162-163.
[85]Berger C., Song Z.M., Li T.B., Li X., Asmerom Y. Ogbazghi, Rui Feng, Zhenting Dai, Alexei N. Marchenkov, Edward H. Conrad, Phillip N. First, Walt A. de Heer, Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoeletronics. J Phys Chem B, 2004, 108, 19912-19916.
[86]Berger C., Song Z.M., Li T.B., Wu X.S., Brown N., Naud C., Mayou D., Hass J., Marchenkov A.N., Conrad E.H., Phillip N.F., Walt A.H., Electron confinement and coherence in patterned epitaxial graphene. Science, 2006, 312, 1191-1196.
[87]Hirata M., Gotou T., Horiuchi S., Fujiwara M., Ohba M., Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of particles. Carbon, 2004, 42, 2929-2937.
[88]Stankovich S., Piner R.D., Chen X.Q., Wu N.G., Nguyen S.B.T., Ruoff R.S., Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem, 2006, 16, 155-158.
[89]Li D., Muller M.B., Gilje S., Richard B.K. & Gordon G.W., Processable aqueous dispersions of graphene nanosheets. Nature Nanotech, 2008, 3, 101-105.
[90]Nakajima T., Matsuo Y., Formation process and structure of graphite oxide. Carbon, 1994, 32, 469-475.
[91]Park S., Ruoff R.S., Chemical methods for the production of graphenes. Nature Nanotech, 2009, 4, 217-224.
[92]Hummers W.S., Offeman R.E., Preparation of graphitic oxide. J Am Chem Soc, 1958, 80, 1339.
[93]Tang L.H., Wang Y., Li Y.M., Feng H., Lu J.and Li J., Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Films. Adv Funct Mater, 2009, 19, 2782-2789.
[94]Oostinga J.B., Heersche H.B., Liu X.L., Alberto F.M. & Lieven M.K.V., Gate-induced insulating state in bilayer graphene devices. Nat Mater, 2008, 7, 151-157.
[95]Nethravathi C, Rajamathi M., Chemically modified graphene sheets produced by the sovothermal reduction of colloidal dispersions of graphite oxide. Carbon, 2008, 46, 1994-1998.
[96]Fan X.B., Peng W.C., Li Y., et al. Deoxygenation of Exfoliated Graphite Oxide under Alkaline Condition: A Green Route to Graphene Preparation. Adv Mater, 2008, 20, 4490-4493.
[97]Williams G., Seger B., Kamat P.V., TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2008, 2, 1487-1491.
[98]Hernandez Y., Nicolosi V., Lotya M., Blighe F.M., Sun Z., De S., McGovern I.T., Holland B., Byrne M., Gun'Ko Y.K., Boland J.J., Niraj P., Duesberg G., Krishnamurthy S., Goodhue R., Hutchison J., Scardaci V., Ferrari A.C. & Coleman J.N., High-yield production of graphene by liquid phase exfoliation of graphite. Nature Nanotech, 2008, 3, 563-568.
[99]Li X., Zhang G., Bai X., Sun X., Wang X., Wang E. & Dai H., Highly conducting graphene sheets and Langmuir-Blodgett film, Nature Nanotech, 2008, 3, 538-542.
[100]Räder H.J., Rouhanipour A., Talarico A.M., Palermo V., Samorì P. and Müllen K., Processing of giant graphene molecules by soft-landing mass spectrometry. Nature Mater, 2006, 5, 276-280.
[101]Yang X.Y., Dou X., Rouhanipour A., Zhi L., Rader H.S., Mullen K., Two-dimensional graphene nanoribbons. J Am Chem Soc, 2008,130, 4216-4217.
[102]Cai J.M., Ruffieux P., Jaafar R., et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 2010, 466, 470-473.
[103]Sutter P.W., Flege J.I., Sutter E.A., Epitaxial graphene on ruthenium. Nature Mater, 2008, 7, 406-411.
[104]Coraux J., Ndiaye A.T., Busse C., et al. Structural coherency of graphene on Ir(111).Nano Lett, 2008, 8, 565-570.
[105]Howard J.B., Mickinnon J.T., Makarovsky Y., et al. Fullerenes C60 and C70 in flame. Nature, 1991, 352, 139-141.
[106]Howard J.B., Carbon shells in flame. Nature, 1994,370,603.
[107]Ando Y., Zhao X., Ohkohchi M., Production of petal-like graphite sheets by hydrogen arc discharge. Carbon, 1997, 35, 153-158.
[108]Baquero F., Martınez J.L., Canton R., Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol.2008, 19 (3), 260–265.
[109]Jiao S.J., Zheng S.R., Yin D.Q., Wang L.H., Chen L.Y., Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria, Chemosphere, 2008, 73 (3), 377–382.
[110]Vasconcelos T.G., Henriques D.M., Konig A., Martins A.F., Kummerer K., Photo-degradation of the antimicrobial ciprofloxacin at high pH: identification and biodegradability assessment of the primary by-products, Chemosphere, 2009, 76, 487–493.
[111]Elsellami L., Chartron V., Vocanson F., Conchon P., Felix C., Guillard C., Retailleau L., Houas A., Coupling process between solid–liquid extraction of amino acids by calixarenes and photocatalytic degradation J. Hazard. Mater. 2009, 166, 1195–1200.
[112]Palominos R., Freer J., Mondaca M.A., Mansilla H.D., Evidence for hole participation during the photocatalytic oxidation of the antibiotic flumequine, J. Photochem. Photobiol. A.Chem. 2008, 193, 139–145.
[113]Arana J., Herrera Melian J.A., Dona Rodriguez J.M., Gonzalez Diaz O., Viera A., Perez Pena J., Marrero Sosa P.M., Espino Jimenez V., TiO2-photocatalysis as a tertiary treatment of naturally treated wastewater, Catal. Today, 2002, 76, 279–289.
[114]Wang H.J., Li J., Quan X., Wu Y., Increased activity of phosphatase PP2A in the presence of the PlA2 polymorphism of αIIbβ3, Appl. Catal. B: Environ.2008, 83, 72–77.
[115]Wan L., Li J.F., Feng J.Y., Sun W., Mao Z.Q., Improved optical response and photocatalysis for N-doped titanium oxide (TiO2) films prepared by oxidation of TiN, Appl. Surf. Sci. 2007, 253, 4764–4767.
[116]Shen X.T., Zhu L.H., Li J., Tang H.Q., Synthesis of molecular imprinted polymer coated photocatalysts with high selectivity, Chem. Commun. 2007, 1163–1165.
[117]Rizzo L., Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment, Water Research, 2011, 45, 4311-4340.
[118]Sacco O., Stoller M., Vaiano V., Ciambelli P., Chianese A., Sannino D., Photocatalytic degradation of organic dyes under visible light on N-doped TiO2 photocatalysts,Interna-ional Journal of Photoenergy ,2012.
[119]Liu Y., Li J., Qiu X., Burda C., Novel TiO2 anocatalysts for wastewater purification: tapping energy from the sun, Water Science and Technology, 2006, 54, 47-54.
[120]Alrousan D.M.A., Polo-López M.I., Dunlop P.S.M., Fernández-Ibá˜nez P., Byrne J.A., Solar photocatalytic disinfection of water with immobilised titanium dioxide in re-circulating flow CPC reactors, Applied Catalysis B: Environmental, 2012, 128, 126-134.
[121]Von G.U., Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine, Water Research, 2003, 37, 1469–1487.
[122]Rizzo L., Manaia C., Merlin C., Schwartz T., Dagot C., Ploy M.C., Michael I., Fatta-Kassinos D., Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment, Science of the Total Environment, 2013, 447, 345–360.
[123]Fernandez P., Blanco J., Sichel C., Malato S., Water disinfection by solar photocatalysis using compound parabolic collectors ,Catalysis Today, 2005, 101, 345–352.
[124]Rizzo L., Inactivation and injury of total coliform bacteria after primary disinfection of drinking water by TiO2 photocatalysis, Journal of Hazardous Materials, 2009, 165, 48–51.
[125]Richardson S.D., Thruston A.D., Collette T.W., Patterson K.S., Lykins B.W., Ireland J.C., Identification of TiO2/UV Disinfection Byproducts in Drinking Water, Environmental Science & Technology,1996, 30, 3327–3334.
[126]Malato S., Fernandez-Ibanez P., Maldonado M.I., Blanco J., Gernjak W., Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends, Catalysis Today, 2009, 147, 1–59.
[127]Ren P.G., Yan D.X., Ji X., Chen T. and Li Z.M., Temperature dependence of graphene oxide reduced by hydrazine hydrate, Nanotechnology, 2011, 22 055705
[128]Chen C.W., Liu Z.T., Zhang Y.Z., Yea J.S. and Lee C.L., Sonoelectrochemical intercalation and exfoliation for the preparation of defective graphene sheets and their application as nonenzymatic H2O2 sensors and oxygen reduction catalysts, RSC Adv., 2015, 5, 21988-21998.
[129]Abulizi A., Yang G.H., Zhu J.J., One-step simple sonochemical fabrication and photocatalytic properties of Cu2O–rGO composites, Ultrasonics Sonochemistry, 2014, 21, 129-135.
[130]Wu T., Gao J., Xu X., Wang W., Gao C. and Qiu H., A new rapid chemical route to prepare reduced graphene oxide using copper metal nanoparticles, Nanotechnology, 2013, 24, 215604.
[131]Li B., Liu T., Hu L., Wang Y., A facile one-pot synthesis of Cu2O/RGO nanocomposite for removal of organic pollutant, Journal of Physics and Chemistry of Solids, 2013, 74, 635-640.
[132]Stankovich S., Dikin D.A. , Piner R.D. , Kohlhaas K.A., Kleinhames A., Jia Y., Wu Y., Nguyen S.B.T., Ruoff R.S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,carbon, 2007, 45, 1558-1565.
[133]朱宏偉,徐志平,謝丹,石墨烯-結構、製備方法與性能表徵,2011,25-27
[134]Shown I., Hsu H.C., Chang Y.C., Lin C.H., Roy P.K., Ganguly A., Wang C.H., Chang J.K., Wu C.I., Chen L.C.and Chen K.H., Highly Efficient Visible Light Photocatalytic Reduction of CO2 to Hydrocarbon Fuels by Cu-Nanoparticle Decorated Graphene Oxide,nano letter, 2014, 14, 6097−6103.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊