跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/03 10:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張惠鈞
研究生(外文):Hui-Chun Chang
論文名稱:基於OWA權重和人格特質的套裝旅遊推薦系統
論文名稱(外文):Group Package Tour Recommender System Based on OWA Weighting and Personality Trait
指導教授:鄭景俗鄭景俗引用關係
指導教授(外文):Ching-Hsue Cheng
口試委員:施東河蘇中和
口試委員(外文):Dong-Her ShihChung Ho Su
口試日期:2016-06-08
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:資訊管理系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:55
中文關鍵詞:推薦系統旅遊偏好循序權重平均運算子人格特質旅遊團體套裝旅遊
外文關鍵詞:Recommender systemTravel preferenceOWA operatorPersonality traitTourismGroup packaged tour
相關次數:
  • 被引用被引用:0
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:1
旅遊業係有無煙囪工業之稱,不需要設廠即可創造獲利。旅客們在景點停留的時間越長,花費也越多。他們通常從網路上找尋想要的旅遊資訊,在這資訊爆炸的時代,推薦系統可以幫助人們不用花很多的時間就能取得有用的資訊。現有的旅遊推薦系統偏向提供單一項目的推薦,像是餐廳或是景點,或是做簡單的屬性配對便推薦給旅客,而且,不同的旅客喜歡的旅遊路線也不一樣。
因此,本研究提出一個推薦方法,利用OWA權重的概念在旅遊偏好上,讓使用者更容易表示其偏好和屬性的優先順序。除此之外,人格特質和旅遊偏好之間的關係也是本研究的目的之一,針對不同的人格特質給予不同的推薦結果。接著將推薦方法實作在Andoird App上,並利用使用者滿意度來評估本研究提出的推薦方法。結果顯示,大部分的人都有多重人格特質,沒有經驗開放性的人最不喜歡遺跡旅遊,沒有親和性、盡責性和神經質的人喜歡低價位的旅遊行程,沒有經驗開放性的人不喜歡天數多的旅遊。除此之外,推薦的結果顯示OWA在本研究是最好的推薦方法。本研究結果可以提供給旅遊利益相關人,讓旅遊業者可以開發不同的團體套裝旅遊路線,或提供給想去旅遊的人做參考。

No-chimney industry is another name of tourism industry. Without factories, output value could also be created. The longer the tourists stay at attractions, the more expense they spend. Usually, tourists searched tourism information on the internet. In the age of information explosion, a recommender system could help people retrieve useful information without spending a lot of time. The exist recommender systems in tourism only provided results whether single items or merely in accordance with conditions set by tourists. Additionally, different people prefer different routes.
Therefore, this study proposed a recommended method which applied the concept of OWA weighting on travel preferences. It makes tourists express their preferences and priorities more easily. Besides, this study also investigate the relationship between tourists’ personality traits and travel preferences, and provide different result to different personality traits. Then, these recommended methods were developed to an android app recommender system is built. Last but not least, user satisfaction is utilized to evaluate the performance. The results show that: (1) Most of people have multiple personality trait, (2) Most of the participants like Leisure tourism, (2) People without Openness who dislike Heritage tourism, (3) Participants without Agreeableness, Conscientiousness and Neuroticism who prefer lower price, (4) People without Openness who dislike long-day trip. Furthermore, the results of recommendation show that OWA weights is the best recommended method in this study, and OWA weight is intermediate weight relative to the listing weight methods. At last the results could provide tourism stakeholder to identify customers’ personality trait and recommend travel routes.

摘要 i
Abstract ii
Contents iii
List of Tables v
List of Figures vi
1.Introduction 1
1.1 Background 1
1.2 Motivation 3
1.3 Purpose 3
1.4 Organization of Thesis 4
2. Related Works 5
2.1 Recommender Systems 5
2.1.1 Types of Recommender Systems 5
2.1.2 Services Offered by Recommender Systems in Tourism 6
2.2 Travel Preference of Group Packaged Tour 7
2.2.1 Group Package Tour 7
2.2.2 Attributes of Group Package Tour 7
2.2.3 Review of Travel Preference 8
2.3 Personality Trait 9
2.3.1 Definition of Personality Trait 9
2.3.2 Classification of Personality Trait. 9
2.3.3 Big Five Personality Trait 10
2.4 Weighting Techniques 12
2.4.1 OWA Weight 12
2.4.2 Rank Order Centroid Weight 14
3. Methodology 15
3.1 Research Process 15
3.2 Questionnaire Design 17
3.2.1 Personality Trait 17
3.2.2 Travel Preference 19
3.2.3 Priority of Travel Preference 19
3.3 Collection of Routes 22
3.3.1 Selection of Travel agencies 22
3.3.2 Collection of Routes and Pre-Process 24
3.4 Recommended Method 27
3.5 System Analysis and Development 28
3.5.1 System Development Environment 28
3.5.2 System Architecture and Process 28
3.5.3 Introduction of Recommender System Interface 29
3.6 System Evaluation 33
4. Analysis and Results 34
4.1 Data Analysis 34
4.2 Evaluation of Recommended Method 42
4.3 Findings 43
4.3.1 Travel Preference 43
4.3.2 Personality Traits 43
4.3.3 Priority of Attributes 43
4.3.4 Recommended method 44
4.3.5 Follow up 45
5. Conclusion 46
Reference 47
Appendix A Questionnaire 53

Baus, J., Cheverst, K., & Kray, C. (2005). A Survey of Map-based Mobile Guides. In Map-based Mobile Services (pp. 193-209). Springer.

Bitonto, P. D., Tria, F. D., Laterza, M., Roselli, T., Rossano, V., & Tangorra, F. (2010). Automated Generation of Itineraries in Recommender Systems for Tourism. In Proceedings of the 10th international conference on web engineering (ICWE'10) (pp. 498-508). Springer.

Brown, S., & Taylor, K. (2014). Household finances and the ‘Big Five’ personality traits. Journal of Economic Psychology, pp. 197–212.

Brusilovsky, P., Kobsa, A., & Nejdl, W. (2007). The adaptive web: methods and strategies of web personalization. Springer-Verlag Berlin Heidelberg.

Carrillo, E., Prado-Gascó, V., Fiszman, S., & Varela, P. (2012). How personality traits and intrinsic personal characteristics influence the consumer's. Food Research International, pp. 792–797.

Chang, C. H. (2002). Modern psychology. Taipei: Tunghua. (in Chinese).

Chen, H. K. (2007). Study on the influences of consumer personality trait on travel decision-making pattern. (Unpublished Master’s thesis). (in Chinese).

Chen, M. L. (2006). Relationships between Vacation Lifestyle and Kinmen Package TravelProduct Preference: An Application of the Stated Preference Model. (Unpublished Master’s thesis). (in Chinese).

Cheverst, K., Davies, N., Mitchell, K., Friday, A., & Efstratiou, C. (2000). Developing a context-aware electronic tourist guide: some issues and experiences. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 17-24.

Chu, T.-L., & HSUEH, Y.-H. (2006). Tourism Geography. Taipei: Wu-Nan Book Inc. (in Chinese).

Conn, S. R., & Rieke, M. L. (1994). The 16pf Fifth Edition Technical Manual. Institute for Personality and Ability Testing, Inc.

Costa, P. J., & McCrae, R. R. (1992). Revised NEO Personality Inventory (NEO-PI-R) and NEO Five-Factor Inventory (NEO-FFI) manual. Odessa, FL: Psychological Assessment Resources, Inc.

Digman, J. M. (1990). Personality structure: Emergence of the five-factor model. Annual Review of Psychology, pp. 417-440.

Donnellan, M. B., Oswald, F. L., Baird, B. M., & Lucas, R. E. (2006). The mini-IPIP scales: Tiny-yet-effective measures of the Big Five factors of personality. Psychological Assessment, 18, pp. 192-203.

Filev, D., & Yager, R. R. (1998, March). On the issue of obtaining OWA operator weights. Fuzzy Sets and Systems, pp. 157-169.

Fuller, R., & Majlender, P. (2001, 11). An analytic approach for obtaining maximal entropy OWA operator weights. Fuzzy Sets and Systems, pp. 53-57.

Gavalas, D., Kenteris, M., Konstantopoulos, C., & Pantziou, G. (2012). A Web Application for Recommending Personalized Mobile Tourist Routes. IET Software, pp. 313-322.

Gavalas, D., Konstantopoulos, C., Mastakas, K., & Pantziou, G. (2013). Mobile recommender systems in tourism. Journal of Network and Computer Applications, pp. 319–333.

Goeldner, R. C., & Brent Ritchie, J. R. (2006). Tourism: Principles, Practices, Philosophies (10th ed.). John Wiley & Sons, Inc.

Goldberg, R. L. (1999). A broad bandwidth, public domain, personality inventory measuring the lower level facets of several five factor models. Personality Psychology in Europe, 7, pp. 7-28.

Goodall, B., & Cooper, C. P. ( 1991). Understanding holiday choice. Progress in tourism, recreation and hospitality management, pp. 58-77.

Greenberg, D. M., Müllensiefen, D., Lamb, M. E., & Rentfrow, P. J. (2015). Personality predicts musical sophistication. Journal of Research in Personality, pp. 154–158.

HIRATA, H., FUKADA, S., ITO, Y., & HORII, M. (2010). PTV Video Content Recommendation System Using Widget Application. IEEE 14th international symposium on consumer, pp. 1-5.

Kenteris, M., Gavalas, D., & Economou, D. (2007, 9 25). An innovative mobile electronic tourist guide application. Personal and Ubiquitous Computing, 13(2), pp. 103-118.

Kvasova, O. (2015). The Big Five personality traits as antecedents of eco-friendly tourist behavior. Personality and Individual Differences, pp. 111–116.

Lee, M. C. (1984). Social Psychology. Taipei: TAYANG (in Chinese).

Linden, G., Smith, B., & York , J. (2003). Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Computing, 7, pp. 76-80.

LIN, T. T. (2009). Travel Industry Management. Taipei: Wu-Nan Book Inc. (in Chinese).

O'Hagan, M. (1988). Aggregating template or rule antecedents in real-time expert systems with fuzzy set logic. Proc. 22nd Annual IEEE Asilomar Conf. Signals, Systems,, pp. 681 - 689.

Olga, K. (2015). The Big Five personality traits as antecedents of eco-friendly tourist. Personality and Individual Differences(83), pp. 111-1116.

Park, M. H., Hong, J. H., & Cho, S. B. (n.d.). Location-Based Recommendation System Using Bayesian User’s Preference Model in Mobile Devices. In Ubiquitous Intelligence and Computing (pp. 1130-1139). Springer.

Pervin, L. A., & John, O. P. (2000). Personality: Theory and Research (8th Edition ed.). John Wiley & Sons.

Phares , J. E. (1991). Introduction to personality. (Third Edition ed.). USA Harper Collins Publishers.

Ricci, F., Rokach, L., Shapira, B., & Kantor, P. B. (2011). Recommender Systems Handbook. Springer.

Servidio, R. (2015). Images, affective evaluation and personality traits in tourist behaviour:. Tourism Management Perspectives, pp. 237–246.

Shao, B., Wang, D., Li, T., & Ogihara, M. (2009, 11). Music Recommendation Based on Acoustic Features and User Access Patterns. IEEE Audio, Speech, and Language Processing, 17(8), pp. 1602 - 1611.

Strobbe, M., Laere, O. V., Dauwe, S., Dhoedt, B., Turck, F. D., Demeester, P., . . . Vanattenhoven, J. (2010, 3). Interest based selection of user generated content for rich communication services. Journal of Network and Computer Applications, 33(2), pp. 84–97.

Suh, Y., & Gartner, W. C. (2004). Preferences and trip expenditures—a conjoint analysis of visitors to Seoul, Korea. Tourism Management, pp. 127–137.

TAN, C. Y. (2005). Taiwan's current situation and future development of the tourism industry. Taiwan National Policy Foundation (in Chinese).

TSAO, S. H. (2001). Tourism Marketing. Taipei: Yangchih (in Chinese).

Tseng, H. W. (2007). Investigating the Effect of Viewing Korean Drama on Fans' Awareness and Attitude toward Korean Drama and Culture. (Unpublished Master’s thesis). (in Chinese).

Tsiligirides, T. (1984). Heuristic methods applied to orienteering. The Journal of the Operational Research Society, 35, pp. 797-809.

Wang, K. C., Hsieh, A. T., & Huan, T. C. (2000). Critical service features in group package tour:. Tourism Management, pp. 177-189.

Yu, C., & Chang, H. (2009). Personalized Location-Based Recommendation Services for Tour Planning in Mobile Tourism Applications. In E-Commerce and Web Technologies (pp. 38-49). Springer.

Yun, Y. L. (2013). The Consumer Preference Of Group Package Tour Product Attributes With Online-purchasing: Based On Group Package Tour To Malaysia. (Unpublished Master’s thesis). (in Chinese).

Zheng, K. C. (2007). A Study on the Relationship Among the University Students' Demographics, Individual Value and the Intension of Travel Suit Products. (Unpublished Master’s thesis). (in Chinese).

Zheng, Y., & Xie, X. (2011, 1). Learning travel recommendations from user-generated GPS traces. ACM Transactions on Intelligent Systems and Technology, 2(1), pp. 2-29.


Agoda. (2015). Retrieved from http://www.agoda.com/

Alexa the Web Information Company. (2015). Retrieved from http://www.alexa.com/

Colatour. (2015). Retrieved from http://www.colatour.com.tw/ (in Chinese).

Company Introduction. (2015). Retrieved from 104 job bank: http://www.104.com.tw/ (in Chinese).

DiSC Overview. (2015). Retrieved from DiSC Profile : https://www.discprofile.com/what-is-disc/overview/

Easytravel recommender system. (2011). Retrieved from http://journey.easytravel.com.tw/# (in Chinese).

ezTravel. (2015). Retrieved from http://www.eztravel.com.tw/ (in Chinese).

Lion Travel. (2015). Retrieved from https://www.liontravel.com/ (in Chinese).

LIU, F. M. (2002, 3). Internet is the main pipeline for Canadian tourist to obtaining info. Retrieved from Institute for Information Industry-FIND: http://www.find.org.tw/market_info.aspx?n_ID=1810 (in Chinese).

Mini-IPIP Narrative Report. (2006). Retrieved from HelloQuizzy.com:
https://www.helloquizzy.com/quizzy/results?quizzyid=8201418792801386216&resultid=238427834

Nearly five years Tourism revenue and expenditure statistics. (2015). Retrieved from Taiwan Tourism Bureau: http://admin.taiwan.net.tw/statistics/year.aspx?no=134 (in Chinese).

Outbound Departures of Nationals of the Republic of China by Destination, 2009-2014. (2015, 10). Retrieved from Taiwan Tourism Bureau: http://admin.taiwan.net.tw/statistics/year.aspx?no=134 (in Chinese).

Set tour. (2015). Retrieved from http://www.settour.com.tw/# (in Chinese).

Star travel. (2015). Retrieved from http://www.startravel.com.tw/ (in Chinese).

Taipei Exange. (2015, 9). Retrieved from http://mops.twse.com.tw/mops/web/index (in Chinese).

Travel agency statistics based area. (2015, 9). Retrieved from Taiwan Tourism Bureau: http://admin.taiwan.net.tw/statistics/month.aspx?no=135 (in Chinese).

Travel Industry Dictionary. (2015). Retrieved from http://www.travel-industry-dictionary.com/

TripAdvisor. (2015). Retrieved from http://www.tripadvisor.com.tw/ (in Chinese).

Trivago. (2015). Retrieved from http://www.trivago.com.tw/

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊