|
Reference
1.Benvenuti, S. and P.M. Comoglio, The MET receptor tyrosine kinase in invasion and metastasis. J Cell Physiol, 2007. 213(2): p. 316-25. 2.Lesko, E. and M. Majka, The biological role of HGF-MET axis in tumor growth and development of metastasis. Front Biosci, 2008. 13: p. 1271-80. 3.Matsumoto, K., et al., Hepatocyte growth factor and Met in tumor biology and therapeutic approach with NK4. Proteomics, 2008. 8(16): p. 3360-70. 4.Trusolino, L., A. Bertotti, and P.M. Comoglio, MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol, 2010. 11(12): p. 834-48. 5.Zhou, H.Y., Y.L. Pon, and A.S. Wong, HGF/MET signaling in ovarian cancer. Curr Mol Med, 2008. 8(6): p. 469-80. 6.De Luca, A., et al., The role of the EGFR signaling in tumor microenvironment. J Cell Physiol, 2008. 214(3): p. 559-67. 7.Normanno, N., et al., Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 2006. 366(1): p. 2-16. 8.Quesnelle, K.M., A.L. Boehm, and J.R. Grandis, STAT-mediated EGFR signaling in cancer. J Cell Biochem, 2007. 102(2): p. 311-9. 9.Achyut, B.R. and L. Yang, Transforming growth factor-beta in the gastrointestinal and hepatic tumor microenvironment. Gastroenterology, 2011. 141(4): p. 1167-78. 10.Javelaud, D., et al., TGF-beta/SMAD/GLI2 signaling axis in cancer progression and metastasis. Cancer Res, 2011. 71(17): p. 5606-10. 11.Meulmeester, E. and P. Ten Dijke, The dynamic roles of TGF-beta in cancer. J Pathol, 2011. 223(2): p. 205-18. 12.Samanta, D. and P.K. Datta, Alterations in the Smad pathway in human cancers. Front Biosci (Landmark Ed), 2012. 17: p. 1281-93. 13.Tian, M., J.R. Neil, and W.P. Schiemann, Transforming growth factor-beta and the hallmarks of cancer. Cell Signal, 2011. 23(6): p. 951-62. 14.Bandapalli, O.R., et al., Paracrine signalling in colorectal liver metastases involving tumor cell-derived PDGF-C and hepatic stellate cell-derived PAK-2. Clin Exp Metastasis, 2012. 29(5): p. 409-17. 15.Iqbal, S., et al., PDGF upregulates Mcl-1 through activation of beta-catenin and HIF-1alpha-dependent signaling in human prostate cancer cells. PLoS One, 2012. 7(1): p. e30764. 16.Shih, A.H. and E.C. Holland, Platelet-derived growth factor (PDGF) and glial tumorigenesis. Cancer Lett, 2006. 232(2): p. 139-47. 17.Suzuki, S., et al., Clinicopathological significance of platelet-derived growth factor (PDGF)-B and vascular endothelial growth factor-A expression, PDGF receptor-beta phosphorylation, and microvessel density in gastric cancer. BMC Cancer, 2010. 10: p. 659. 18.Heinzle, C., et al., Differential effects of polymorphic alleles of FGF receptor 4 on colon cancer growth and metastasis. Cancer Res, 2012. 72(22): p. 5767-77. 19.Murphy, T., et al., Evidence for distinct alterations in the FGF axis in prostate cancer progression to an aggressive clinical phenotype. J Pathol, 2010. 220(4): p. 452-60. 20.Masoumi Moghaddam, S., et al., Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer. Cancer Metastasis Rev, 2012. 31(1-2): p. 143-62. 21.Ogunwobi, O.O., et al., Cyclooxygenase-2 and Akt mediate multiple growth-factor-induced epithelial-mesenchymal transition in human hepatocellular carcinoma. J Gastroenterol Hepatol, 2012. 27(3): p. 566-78. 22.Gao, J., et al., Targeting c-Met as a promising strategy for the treatment of hepatocellular carcinoma. Pharmacol Res, 2012. 65(1): p. 23-30. 23.You, H., et al., c-Met represents a potential therapeutic target for personalized treatment in hepatocellular carcinoma. Hepatology, 2011. 54(3): p. 879-89. 24.Li, Y., et al., [Clinical analysis of the treatment:transcatheter arterial chemoembolization combined with sorafenib in advanced hepatocellular carcinoma]. Zhonghua Yi Xue Za Zhi, 2010. 90(31): p. 2187-92. 25.Blivet-Van Eggelpoel, M.J., et al., Epidermal growth factor receptor and HER-3 restrict cell response to sorafenib in hepatocellular carcinoma cells. J Hepatol, 2012. 57(1): p. 108-15. 26.Cepero, V., et al., MET and KRAS gene amplification mediates acquired resistance to MET tyrosine kinase inhibitors. Cancer Res, 2010. 70(19): p. 7580-90. 27.Pelicci, G., et al., The motogenic and mitogenic responses to HGF are amplified by the Shc adaptor protein. Oncogene, 1995. 10(8): p. 1631-8. 28.Ponzetto, C., et al., A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell, 1994. 77(2): p. 261-71. 29.Osada, S., et al., Evaluation of extracellular signal regulated kinase expression and its relation to treatment of hepatocellular carcinoma. J Am Coll Surg, 2005. 201(3): p. 405-11. 30.Menakongka, A. and T. Suthiphongchai, Involvement of PI3K and ERK1/2 pathways in hepatocyte growth factor-induced cholangiocarcinoma cell invasion. World J Gastroenterol, 2010. 16(6): p. 713-22. 31.Zillhardt, M., J.G. Christensen, and E. Lengyel, An orally available small-molecule inhibitor of c-Met, PF-2341066, reduces tumor burden and metastasis in a preclinical model of ovarian cancer metastasis. Neoplasia, 2010. 12(1): p. 1-10. 32.Moore, A.E., et al., HGF/Met signalling promotes PGE(2) biogenesis via regulation of COX-2 and 15-PGDH expression in colorectal cancer cells. Carcinogenesis, 2009. 30(10): p. 1796-804. 33.Nasrazadani, A. and C.L. Van Den Berg, c-Jun N-terminal Kinase 2 Regulates Multiple Receptor Tyrosine Kinase Pathways in Mouse Mammary Tumor Growth and Metastasis. Genes Cancer, 2011. 2(1): p. 31-45. 34.Zhou, H.Y., et al., Hepatocyte growth factor enhances proteolysis and invasiveness of human nasopharyngeal cancer cells through activation of PI3K and JNK. FEBS Lett, 2008. 582(23-24): p. 3415-22. 35.Yao, Z. and R. Seger, The ERK signaling cascade--views from different subcellular compartments. Biofactors, 2009. 35(5): p. 407-16. 36.Liang, C.C. and H.C. Chen, Sustained activation of extracellular signal-regulated kinase stimulated by hepatocyte growth factor leads to integrin alpha 2 expression that is involved in cell scattering. J Biol Chem, 2001. 276(24): p. 21146-52. 37.Parachoniak, C.A., et al., GGA3 functions as a switch to promote Met receptor recycling, essential for sustained ERK and cell migration. Dev Cell, 2011. 20(6): p. 751-63. 38.Paumelle, R., et al., Sequential activation of ERK and repression of JNK by scatter factor/hepatocyte growth factor in madin-darby canine kidney epithelial cells. Mol Biol Cell, 2000. 11(11): p. 3751-63. 39.Rush, S., et al., c-jun amino-terminal kinase and mitogen activated protein kinase 1/2 mediate hepatocyte growth factor-induced migration of brain endothelial cells. Exp Cell Res, 2007. 313(1): p. 121-32. 40.Su, Y., et al., JNK/P38 mitogen-activated protein kinase used for hepatocyte growth factor-induced proliferation, differentiation, and migration in human dental papilla cells. J Endod, 2012. 38(9): p. 1207-13. 41.Le Clainche, C. and M.F. Carlier, Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol Rev, 2008. 88(2): p. 489-513. 42.Ridley, A.J., et al., Cell migration: integrating signals from front to back. Science, 2003. 302(5651): p. 1704-9. 43.Lauffenburger, D.A. and A.F. Horwitz, Cell migration: a physically integrated molecular process. Cell, 1996. 84(3): p. 359-69. 44.Webb, D.J., et al., FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol, 2004. 6(2): p. 154-61. 45.Ishibe, S., et al., Paxillin serves as an ERK-regulated scaffold for coordinating FAK and Rac activation in epithelial morphogenesis. Mol Cell, 2004. 16(2): p. 257-67. 46.Ishibe, S., et al., Phosphorylation-dependent paxillin-ERK association mediates hepatocyte growth factor-stimulated epithelial morphogenesis. Mol Cell, 2003. 12(5): p. 1275-85. 47.Liu, Z.X., et al., Hepatocyte growth factor induces ERK-dependent paxillin phosphorylation and regulates paxillin-focal adhesion kinase association. J Biol Chem, 2002. 277(12): p. 10452-8. 48.Pribic, J. and D. Brazill, Paxillin phosphorylation and complexing with Erk and FAK are regulated by PLD activity in MDA-MB-231 cells. Cell Signal, 2012. 24(8): p. 1531-40. 49.Berginski, M.E., et al., High-resolution quantification of focal adhesion spatiotemporal dynamics in living cells. PLoS One, 2011. 6(7): p. e22025. 50.Chen, J. and K.A. Gallo, MLK3 regulates paxillin phosphorylation in chemokine-mediated breast cancer cell migration and invasion to drive metastasis. Cancer Res, 2012. 72(16): p. 4130-40. 51.Huang, C., K. Jacobson, and M.D. Schaller, A role for JNK-paxillin signaling in cell migration. Cell Cycle, 2004. 3(1): p. 4-6. 52.Huang, C., et al., JNK phosphorylates paxillin and regulates cell migration. Nature, 2003. 424(6945): p. 219-23. 53.Rosse, C., et al., An aPKC-exocyst complex controls paxillin phosphorylation and migration through localised JNK1 activation. PLoS Biol, 2009. 7(11): p. e1000235. 54.Guo, K., et al., Involvement of protein kinase C beta-extracellular signal-regulating kinase 1/2/p38 mitogen-activated protein kinase-heat shock protein 27 activation in hepatocellular carcinoma cell motility and invasion. Cancer Sci, 2008. 99(3): p. 486-96. 55.Hu, C.T., et al., Reactive oxygen species-mediated PKC and integrin signaling promotes tumor progression of human hepatoma HepG2. Clin Exp Metastasis, 2011. 28(8): p. 851-63. 56.Iyoda, T., et al., Lysophosphatidic acid induces early growth response-1 (Egr-1) protein expression via protein kinase Cdelta-regulated extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) activation in vascular smooth muscle cells. J Biol Chem, 2012. 287(27): p. 22635-42. 57.Lin, C.W., et al., 12-O-tetradecanoylphorbol-13-acetate-induced invasion/migration of glioblastoma cells through activating PKCalpha/ERK/NF-kappaB-dependent MMP-9 expression. J Cell Physiol, 2010. 225(2): p. 472-81. 58.Sipeki, S., et al., Protein kinase C decreases the hepatocyte growth factor-induced activation of Erk1/Erk2 MAP kinases. Cell Signal, 2000. 12(8): p. 549-55. 59.Kermorgant, S., D. Zicha, and P.J. Parker, PKC controls HGF-dependent c-Met traffic, signalling and cell migration. EMBO J, 2004. 23(19): p. 3721-34. 60.Hu, C.T., et al., PKC mediates fluctuant ERK-paxillin signaling for hepatocyte growth factor-induced migration of hepatoma cell HepG2. Cellular Signalling, 2013. 25(6): p. 1457-67. 61.Polo, S. and P.P. Di Fiore, Endocytosis conducts the cell signaling orchestra. Cell, 2006. 124(5): p. 897-900. 62.Alvi, F., et al., Regulation of membrane trafficking and endocytosis by protein kinase C: emerging role of the pericentrion, a novel protein kinase C-dependent subset of recycling endosomes. Cell Mol Life Sci, 2007. 64(3): p. 263-70. 63.Sorkin, A. and M. von Zastrow, Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol, 2009. 10(9): p. 609-22. 64.Kermorgant, S., D. Zicha, and P.J. Parker, Protein kinase C controls microtubule-based traffic but not proteasomal degradation of c-Met. J Biol Chem, 2003. 278(31): p. 28921-9. 65.McMahon, H.T. and E. Boucrot, Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol, 2011. 12(8): p. 517-33. 66.Ghosh, P. and S. Kornfeld, Phosphorylation-induced conformational changes regulate GGAs 1 and 3 function at the trans-Golgi network. J Biol Chem, 2003. 278(16): p. 14543-9. 67.Kametaka, S., R. Mattera, and J.S. Bonifacino, Epidermal growth factor-dependent phosphorylation of the GGA3 adaptor protein regulates its recruitment to membranes. Mol Cell Biol, 2005. 25(18): p. 7988-8000. 68.Scott, G.K., et al., A PACS-1, GGA3 and CK2 complex regulates CI-MPR trafficking. EMBO J, 2006. 25(19): p. 4423-35. 69.Sigismund, S., et al., Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev Cell, 2008. 15(2): p. 209-19. 70.Clague, M.J., Met receptor: a moving target. Sci Signal, 2011. 4(190): p. pe40. 71.Joffre, C., et al., A direct role for Met endocytosis in tumorigenesis. Nat Cell Biol, 2011. 13(7): p. 827-37. 72.Hu, C.T., J.R. Wu, and W.S. Wu, The role of endosomal signaling triggered by metastatic growth factors in tumor progression. Cell Signal, 2013. 25(7): p. 1539-45. 73.Barrow-McGee, R. and S. Kermorgant, Met endosomal signalling: in the right place, at the right time. Int J Biochem Cell Biol, 2014. 49: p. 69-74.
|