跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/04 06:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪馨徽
研究生(外文):Shin-Huei Hung
論文名稱:PKC 所調節的c-Met內胞作用在肝細胞生長因子所誘導訊息波動中的機轉
論文名稱(外文):The Role Of PKC-Mediated C-Met Endocytosis In HGF-Induced Fluctuant Signaling
指導教授:吳文陞
指導教授(外文):Wen-Sheng Wu
口試委員:胡志棠許榮欣
口試委員(外文):Chi-Tan HuJung-Hsin Hsu
口試日期:2014-07-26
學位類別:碩士
校院名稱:慈濟大學
系所名稱:醫學檢驗生物技術學系醫學生物技術碩士班
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:67
中文關鍵詞:內胞作用蛋白質激酶 C肝細胞生長因子
外文關鍵詞:EndocytosisPKCHGF
相關次數:
  • 被引用被引用:0
  • 點閱點閱:532
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
HGF (Hepatocyte growth factor) (肝細胞生長因子)是癌細胞轉移的必要因素之一,能夠促進肝癌細胞腫瘤發展。c-Met,HGF的RTK (Receptor tyrosine kinase) (受體酪胺酸激酶) 被認為是治療肝細胞癌的潛在治療標靶。所以才更迫切需要去探討HGF/ c-Met訊息的詳細機制,從而制定更有效的標靶策略。
我們最近研究證實Hep G2細胞移動所需的HGF誘導ERK- paxillin訊息波動。我們進一步發現HGF誘導c-Met, JNK及paxillin (Ser178)訊息磷酸化,在初始波峰的0.5小時、在中間下降的4小時和之後的高峰10小時是共同的波動模式特徵。
這樣的波動訊息使人聯想到c-Met的內吞作用,以時間及空間的方式控制訊息傳導。HGF誘導RTK內吞作用後,訊息傳導可以在早期內涵體中持續後再回收至漿膜上或是被標上泛素直接送到溶酶體降解。
在本篇中,我們證實了內涵體形成在0.5小時增強JNK/ Paxillin (Ser178)訊息磷酸化所必須。另一方面,以Dynasore 阻斷早期內涵體形成,可能抑制HGF誘導Hep G2細胞移動和JNK/ Paxillin訊息。
我們最近研究亦有證實蛋白質激酶C可調控Hep G2細胞移動中HGF誘導的ERK/ JNK- paxillin訊息波動。所以我們進一步的探討HGF誘導訊息波動是與PKC所調控的c-Met內吞作用有關。隨後,PKC 調控 c-Met內涵體降解之後訊息下降直到4小時。在10小時,JNK/ Paxillin (Ser178) 訊息磷酸化上升,可能是經由Golgi-localized, gamma – ear – containing , Arf -binding proteins 3 (GGA3) 調控內涵體的再回收。
最後,HGF誘導Hep G2細胞移動和轉移可經由內吞作用抑制劑被抑制,與內涵體相關的分子是否有希望可以作為預防HGF誘導肝細胞癌發展的標靶治療。

Hepatocyte growth factor (HGF) is one of the essential metastatic factors capable of triggering tumor progression of hepatocellular carcinoma cell (HCC). c-Met, the receptor tyrosine kinase (RTK) of HGF was regarded as a potential therapeutic target for treatment of hepatocellular carcinoma. It is urgent to explore the detailed mechanisms of HGF/c-Met signaling for devising more effective targeting strategy.
Our recent study demonstrated that HGF-induced fluctuant ERK-paxillin signaling for cell migration of HepG2. We further found HGF-induced phosphorylations of c-Met, JNK and paxillin (Ser178) shared a common fluctuant pattern characterized by an initial peak at 0.5h, a middle drop at 4h and a later peak at 10 h.
Such signaling fluctuation was reminiscent of c-Met endocytosis, which control signal transduction in a temporal and spatial manner. After HGF-induced RTK endocytosis, signal transduction can be sustained within early endosome which may recycle back to the plasma membrane or subject to ubiquitin - directed lysosomal degradation.
Here, we demonstrated that endosome formation is required for initial enhancement of JNK/Paxillin (S178) phosphorylations at 0.5 h. On the other hand, blockade of early endosome formation by dynasor may suppress HGF-induced cell migration of HepG2 and suppress HGF- induced fluctuant JNK-paxillin signaling.
Our recent study demonstrated that protein kinase C (PKC) mediated HGF-induced fluctuant ERK/JNK-paxillin signaling for cell migration of HepG2. We further proposed that HGF-induced fluctuant signaling is well correlated with endocytosis of c-Met, mediated by PKC. Subsequently, PKC mediates endosomal c-Met degradation for subsequent signal declination until 4h. At 10 h, the phosphorylations of JNK/ Paxillin (S178) rised again via Golgi-localized, gamma – ear – containing , Arf -binding proteins 3 (GGA3)-mediated endosomal recycling.
Finally, HGF-induced cell migration and metastasis of HepG2 can be prevented by inhibitors of endocytosis, implicating that critical endosomal components are promising therapeutic targets for preventing HGF-induced tumor progression of HCC.

目錄
Abstract IV
中文摘要 VI
第一章 緒論 1
1.1 研究背景 1
1.2研究目的: 5
第二章 研究方法 6
2.1 人類肝癌細胞的培養 (Cell culture) 6
2.2 西方墨點法 (Western Blot) 6
2.3 細胞移動之測定 (Migration) 11
2.4 小髮夾彎RNA (Small hairpin RNA; shRNA) 12
2.5 轉染細胞 (Transient Transfection) 14
2.6 小干擾RNA(Small interfering RNA;siRNA)轉染細胞 15
2.7 免疫螢光分析 (Immunofluorescence assay) 16
2.8 侵犯試驗 (Invasion assay) 17
2.9 建立肝內轉移動物模式 (Establisment of intrahepatic metastatic in animal model) 18
第三章 結果 19
3.1 HGF誘導c-Met-JNK-Paxillin訊息波動 19
3.2 網格蛋白依賴性 (clatherin dependent) 內涵體 (endosome) 形成是JNK,Paxillin磷酸化初始波動所必須的 20
3.3 PKC在HGF誘導訊息波動初期時負調控JNK/Paxillin(Ser178) 磷酸化 21
3.4 PKC及PKC負責HGF誘導c-Met降解及抑制JNK / Paxillin (Ser178) 訊息 21
3.5 HGF誘導p-JNK/ p-Paxillin (S178) 與GGA3 colocalization是JNK / Paxillin (S178) 所需 22
3.6 HGF在PKC依賴性模式下誘導GGA3磷酸化 23
3.7 HGF誘導內吞作用是HCC腫瘤發展所必需的 24
第四章 討論 27
4.1 網格蛋白-依賴性內涵體形成是在HGF處理早期時JNK/Paxillin完全活化所必須 27
4.2 PKC  及 PKC  調控c- Met降解是與抑制JNK - Paxillin訊息相關 27
4.3 GGA3調控內涵體再回收再度活化JNK-Paxillin(S178)訊息 28
4.4 c-Met內吞作用在HCC發展中的角色 28
第五章 結論 29
第六章 參考文獻 30

圖目錄
圖 1 36
圖 1 A. 在12小時中HGF 誘導Met / JNK/ Paxillin (Ser 178) 訊息波動 36
圖 1 B.圖1A的量化結果 36
圖2. 38
圖 2. PKC和clathrin-dependent 內涵體形成調控JNK/ paxillin (Ser178) 磷酸化的差異 38
圖 3. 39
圖 3 A. PKC  / 是HGF誘導c-Met降解和負調控JNK / paxillin (Ser178) 磷酸化所必須 39
圖 3 B. PKC isozymes 轉染效果 39
圖4. 41
圖 4. HGF誘導p-JNK/p-Paxillin (Ser178)與GGA3 colocalization在10 hours的時候 42
圖5. 43
圖 5A . GGA3 siRNA轉染效果 43
圖 5B . GGA3 是HGF誘導JNK/Paxillin (Ser178) 磷酸化在0.5及10 hours時所必須的 43
圖 6 45
圖 6 A. 在12小時中HGF 誘導GGA3訊息波動 45
圖 6 B. PKC可調控HGF所誘導的GGA3磷酸化 46
圖 6 C . PKC調控HGF誘導GGA3磷酸化 47
圖 7 48
圖 7 A . HGF誘導的內吞作用是HCC移動時所需的 48
圖 7 B . HGF誘導的內吞作用是HCC侵犯時所需的 49
圖 7 C . HGF誘導的內吞作用是HCC 肝內轉移時所需的 50

表目錄
表格 1. Western blot膠的濃度圖表 47
表格 2. 抑制劑圖表 48
表格 3. shRNA sequence 圖表 49
表格 4. 訊息傳導路徑圖表 50

Reference

1.Benvenuti, S. and P.M. Comoglio, The MET receptor tyrosine kinase in invasion and metastasis. J Cell Physiol, 2007. 213(2): p. 316-25.
2.Lesko, E. and M. Majka, The biological role of HGF-MET axis in tumor growth and development of metastasis. Front Biosci, 2008. 13: p. 1271-80.
3.Matsumoto, K., et al., Hepatocyte growth factor and Met in tumor biology and therapeutic approach with NK4. Proteomics, 2008. 8(16): p. 3360-70.
4.Trusolino, L., A. Bertotti, and P.M. Comoglio, MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol, 2010. 11(12): p. 834-48.
5.Zhou, H.Y., Y.L. Pon, and A.S. Wong, HGF/MET signaling in ovarian cancer. Curr Mol Med, 2008. 8(6): p. 469-80.
6.De Luca, A., et al., The role of the EGFR signaling in tumor microenvironment. J Cell Physiol, 2008. 214(3): p. 559-67.
7.Normanno, N., et al., Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 2006. 366(1): p. 2-16.
8.Quesnelle, K.M., A.L. Boehm, and J.R. Grandis, STAT-mediated EGFR signaling in cancer. J Cell Biochem, 2007. 102(2): p. 311-9.
9.Achyut, B.R. and L. Yang, Transforming growth factor-beta in the gastrointestinal and hepatic tumor microenvironment. Gastroenterology, 2011. 141(4): p. 1167-78.
10.Javelaud, D., et al., TGF-beta/SMAD/GLI2 signaling axis in cancer progression and metastasis. Cancer Res, 2011. 71(17): p. 5606-10.
11.Meulmeester, E. and P. Ten Dijke, The dynamic roles of TGF-beta in cancer. J Pathol, 2011. 223(2): p. 205-18.
12.Samanta, D. and P.K. Datta, Alterations in the Smad pathway in human cancers. Front Biosci (Landmark Ed), 2012. 17: p. 1281-93.
13.Tian, M., J.R. Neil, and W.P. Schiemann, Transforming growth factor-beta and the hallmarks of cancer. Cell Signal, 2011. 23(6): p. 951-62.
14.Bandapalli, O.R., et al., Paracrine signalling in colorectal liver metastases involving tumor cell-derived PDGF-C and hepatic stellate cell-derived PAK-2. Clin Exp Metastasis, 2012. 29(5): p. 409-17.
15.Iqbal, S., et al., PDGF upregulates Mcl-1 through activation of beta-catenin and HIF-1alpha-dependent signaling in human prostate cancer cells. PLoS One, 2012. 7(1): p. e30764.
16.Shih, A.H. and E.C. Holland, Platelet-derived growth factor (PDGF) and glial tumorigenesis. Cancer Lett, 2006. 232(2): p. 139-47.
17.Suzuki, S., et al., Clinicopathological significance of platelet-derived growth factor (PDGF)-B and vascular endothelial growth factor-A expression, PDGF receptor-beta phosphorylation, and microvessel density in gastric cancer. BMC Cancer, 2010. 10: p. 659.
18.Heinzle, C., et al., Differential effects of polymorphic alleles of FGF receptor 4 on colon cancer growth and metastasis. Cancer Res, 2012. 72(22): p. 5767-77.
19.Murphy, T., et al., Evidence for distinct alterations in the FGF axis in prostate cancer progression to an aggressive clinical phenotype. J Pathol, 2010. 220(4): p. 452-60.
20.Masoumi Moghaddam, S., et al., Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer. Cancer Metastasis Rev, 2012. 31(1-2): p. 143-62.
21.Ogunwobi, O.O., et al., Cyclooxygenase-2 and Akt mediate multiple growth-factor-induced epithelial-mesenchymal transition in human hepatocellular carcinoma. J Gastroenterol Hepatol, 2012. 27(3): p. 566-78.
22.Gao, J., et al., Targeting c-Met as a promising strategy for the treatment of hepatocellular carcinoma. Pharmacol Res, 2012. 65(1): p. 23-30.
23.You, H., et al., c-Met represents a potential therapeutic target for personalized treatment in hepatocellular carcinoma. Hepatology, 2011. 54(3): p. 879-89.
24.Li, Y., et al., [Clinical analysis of the treatment:transcatheter arterial chemoembolization combined with sorafenib in advanced hepatocellular carcinoma]. Zhonghua Yi Xue Za Zhi, 2010. 90(31): p. 2187-92.
25.Blivet-Van Eggelpoel, M.J., et al., Epidermal growth factor receptor and HER-3 restrict cell response to sorafenib in hepatocellular carcinoma cells. J Hepatol, 2012. 57(1): p. 108-15.
26.Cepero, V., et al., MET and KRAS gene amplification mediates acquired resistance to MET tyrosine kinase inhibitors. Cancer Res, 2010. 70(19): p. 7580-90.
27.Pelicci, G., et al., The motogenic and mitogenic responses to HGF are amplified by the Shc adaptor protein. Oncogene, 1995. 10(8): p. 1631-8.
28.Ponzetto, C., et al., A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell, 1994. 77(2): p. 261-71.
29.Osada, S., et al., Evaluation of extracellular signal regulated kinase expression and its relation to treatment of hepatocellular carcinoma. J Am Coll Surg, 2005. 201(3): p. 405-11.
30.Menakongka, A. and T. Suthiphongchai, Involvement of PI3K and ERK1/2 pathways in hepatocyte growth factor-induced cholangiocarcinoma cell invasion. World J Gastroenterol, 2010. 16(6): p. 713-22.
31.Zillhardt, M., J.G. Christensen, and E. Lengyel, An orally available small-molecule inhibitor of c-Met, PF-2341066, reduces tumor burden and metastasis in a preclinical model of ovarian cancer metastasis. Neoplasia, 2010. 12(1): p. 1-10.
32.Moore, A.E., et al., HGF/Met signalling promotes PGE(2) biogenesis via regulation of COX-2 and 15-PGDH expression in colorectal cancer cells. Carcinogenesis, 2009. 30(10): p. 1796-804.
33.Nasrazadani, A. and C.L. Van Den Berg, c-Jun N-terminal Kinase 2 Regulates Multiple Receptor Tyrosine Kinase Pathways in Mouse Mammary Tumor Growth and Metastasis. Genes Cancer, 2011. 2(1): p. 31-45.
34.Zhou, H.Y., et al., Hepatocyte growth factor enhances proteolysis and invasiveness of human nasopharyngeal cancer cells through activation of PI3K and JNK. FEBS Lett, 2008. 582(23-24): p. 3415-22.
35.Yao, Z. and R. Seger, The ERK signaling cascade--views from different subcellular compartments. Biofactors, 2009. 35(5): p. 407-16.
36.Liang, C.C. and H.C. Chen, Sustained activation of extracellular signal-regulated kinase stimulated by hepatocyte growth factor leads to integrin alpha 2 expression that is involved in cell scattering. J Biol Chem, 2001. 276(24): p. 21146-52.
37.Parachoniak, C.A., et al., GGA3 functions as a switch to promote Met receptor recycling, essential for sustained ERK and cell migration. Dev Cell, 2011. 20(6): p. 751-63.
38.Paumelle, R., et al., Sequential activation of ERK and repression of JNK by scatter factor/hepatocyte growth factor in madin-darby canine kidney epithelial cells. Mol Biol Cell, 2000. 11(11): p. 3751-63.
39.Rush, S., et al., c-jun amino-terminal kinase and mitogen activated protein kinase 1/2 mediate hepatocyte growth factor-induced migration of brain endothelial cells. Exp Cell Res, 2007. 313(1): p. 121-32.
40.Su, Y., et al., JNK/P38 mitogen-activated protein kinase used for hepatocyte growth factor-induced proliferation, differentiation, and migration in human dental papilla cells. J Endod, 2012. 38(9): p. 1207-13.
41.Le Clainche, C. and M.F. Carlier, Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol Rev, 2008. 88(2): p. 489-513.
42.Ridley, A.J., et al., Cell migration: integrating signals from front to back. Science, 2003. 302(5651): p. 1704-9.
43.Lauffenburger, D.A. and A.F. Horwitz, Cell migration: a physically integrated molecular process. Cell, 1996. 84(3): p. 359-69.
44.Webb, D.J., et al., FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol, 2004. 6(2): p. 154-61.
45.Ishibe, S., et al., Paxillin serves as an ERK-regulated scaffold for coordinating FAK and Rac activation in epithelial morphogenesis. Mol Cell, 2004. 16(2): p. 257-67.
46.Ishibe, S., et al., Phosphorylation-dependent paxillin-ERK association mediates hepatocyte growth factor-stimulated epithelial morphogenesis. Mol Cell, 2003. 12(5): p. 1275-85.
47.Liu, Z.X., et al., Hepatocyte growth factor induces ERK-dependent paxillin phosphorylation and regulates paxillin-focal adhesion kinase association. J Biol Chem, 2002. 277(12): p. 10452-8.
48.Pribic, J. and D. Brazill, Paxillin phosphorylation and complexing with Erk and FAK are regulated by PLD activity in MDA-MB-231 cells. Cell Signal, 2012. 24(8): p. 1531-40.
49.Berginski, M.E., et al., High-resolution quantification of focal adhesion spatiotemporal dynamics in living cells. PLoS One, 2011. 6(7): p. e22025.
50.Chen, J. and K.A. Gallo, MLK3 regulates paxillin phosphorylation in chemokine-mediated breast cancer cell migration and invasion to drive metastasis. Cancer Res, 2012. 72(16): p. 4130-40.
51.Huang, C., K. Jacobson, and M.D. Schaller, A role for JNK-paxillin signaling in cell migration. Cell Cycle, 2004. 3(1): p. 4-6.
52.Huang, C., et al., JNK phosphorylates paxillin and regulates cell migration. Nature, 2003. 424(6945): p. 219-23.
53.Rosse, C., et al., An aPKC-exocyst complex controls paxillin phosphorylation and migration through localised JNK1 activation. PLoS Biol, 2009. 7(11): p. e1000235.
54.Guo, K., et al., Involvement of protein kinase C beta-extracellular signal-regulating kinase 1/2/p38 mitogen-activated protein kinase-heat shock protein 27 activation in hepatocellular carcinoma cell motility and invasion. Cancer Sci, 2008. 99(3): p. 486-96.
55.Hu, C.T., et al., Reactive oxygen species-mediated PKC and integrin signaling promotes tumor progression of human hepatoma HepG2. Clin Exp Metastasis, 2011. 28(8): p. 851-63.
56.Iyoda, T., et al., Lysophosphatidic acid induces early growth response-1 (Egr-1) protein expression via protein kinase Cdelta-regulated extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) activation in vascular smooth muscle cells. J Biol Chem, 2012. 287(27): p. 22635-42.
57.Lin, C.W., et al., 12-O-tetradecanoylphorbol-13-acetate-induced invasion/migration of glioblastoma cells through activating PKCalpha/ERK/NF-kappaB-dependent MMP-9 expression. J Cell Physiol, 2010. 225(2): p. 472-81.
58.Sipeki, S., et al., Protein kinase C decreases the hepatocyte growth factor-induced activation of Erk1/Erk2 MAP kinases. Cell Signal, 2000. 12(8): p. 549-55.
59.Kermorgant, S., D. Zicha, and P.J. Parker, PKC controls HGF-dependent c-Met traffic, signalling and cell migration. EMBO J, 2004. 23(19): p. 3721-34.
60.Hu, C.T., et al., PKC mediates fluctuant ERK-paxillin signaling for hepatocyte growth factor-induced migration of hepatoma cell HepG2. Cellular Signalling, 2013. 25(6): p. 1457-67.
61.Polo, S. and P.P. Di Fiore, Endocytosis conducts the cell signaling orchestra. Cell, 2006. 124(5): p. 897-900.
62.Alvi, F., et al., Regulation of membrane trafficking and endocytosis by protein kinase C: emerging role of the pericentrion, a novel protein kinase C-dependent subset of recycling endosomes. Cell Mol Life Sci, 2007. 64(3): p. 263-70.
63.Sorkin, A. and M. von Zastrow, Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol, 2009. 10(9): p. 609-22.
64.Kermorgant, S., D. Zicha, and P.J. Parker, Protein kinase C controls microtubule-based traffic but not proteasomal degradation of c-Met. J Biol Chem, 2003. 278(31): p. 28921-9.
65.McMahon, H.T. and E. Boucrot, Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol, 2011. 12(8): p. 517-33.
66.Ghosh, P. and S. Kornfeld, Phosphorylation-induced conformational changes regulate GGAs 1 and 3 function at the trans-Golgi network. J Biol Chem, 2003. 278(16): p. 14543-9.
67.Kametaka, S., R. Mattera, and J.S. Bonifacino, Epidermal growth factor-dependent phosphorylation of the GGA3 adaptor protein regulates its recruitment to membranes. Mol Cell Biol, 2005. 25(18): p. 7988-8000.
68.Scott, G.K., et al., A PACS-1, GGA3 and CK2 complex regulates CI-MPR trafficking. EMBO J, 2006. 25(19): p. 4423-35.
69.Sigismund, S., et al., Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev Cell, 2008. 15(2): p. 209-19.
70.Clague, M.J., Met receptor: a moving target. Sci Signal, 2011. 4(190): p. pe40.
71.Joffre, C., et al., A direct role for Met endocytosis in tumorigenesis. Nat Cell Biol, 2011. 13(7): p. 827-37.
72.Hu, C.T., J.R. Wu, and W.S. Wu, The role of endosomal signaling triggered by metastatic growth factors in tumor progression. Cell Signal, 2013. 25(7): p. 1539-45.
73.Barrow-McGee, R. and S. Kermorgant, Met endosomal signalling: in the right place, at the right time. Int J Biochem Cell Biol, 2014. 49: p. 69-74.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top