跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 22:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝忠孝
研究生(外文):Chung-Hsiao Hsieh
論文名稱:應用馬可夫過程於動態輪耕賽局模型之研究
論文名稱(外文):A Study on Game Models for Dynamic Crop Rotation using the Markov Process
指導教授:林達榮林達榮引用關係
指導教授(外文):Tyrone T. Lin
學位類別:碩士
校院名稱:國立東華大學
系所名稱:國際企業學系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
論文頁數:43
中文關鍵詞:動態輪耕決策馬可夫過程
外文關鍵詞:dynamic crop rotationdecision-makingMarkov process
相關次數:
  • 被引用被引用:0
  • 點閱點閱:311
  • 評分評分:
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:0
本文旨在探討傳統農業生產者所使用之輪耕方法在面對貿易自由化和現代農業所面臨之糧食作物價格波動與自然災害下,生產者將如何考量不同糧食作物價格水準和氣候災害變化機率以進行動態方式耕地輪作模式。傳統上,在農經領域習慣以數理模型進行產量模擬,農藝領域常以生產相關變數進行產量預測,而本文結合兩者常用之賽局模型與馬可夫過程,進行生產者的策略預測與建議,以期在農業生產中導入決策之研究。一開始先導入賽局混合策略之概念用以建構兩人賽局;接著在同時考量雙方追求自身期望利益相等下,進行動態耕地輪作之決策並以此延伸出多條穩定的動態耕地輪作策略之循環,然後導入馬可夫鍊以開發一個穩定馬可夫過程做為最終決策之依據;最終本文嘗試加入國外競爭者進口糧食作物至國內市場,建構三人賽局並以此延伸國內生產者之決策模式以進行更進一步的研究。
This paper mainly explores the situation that when the traditional agricultural producers faces free trade and modern agriculture’s grain crop price fluctuations and natural climate changes, they will consider a level of pricing for grain crops and a probability of climate changes by developing a dynamic grain crop rotation model. Traditional, the scholar in agriculture economic accustomed to simulate yield by mathematical models, in agronomy, they usually use the variables of production to predict yield. But this paper combine the game model and Markov process that common usage in these two fields for producers’ strategic forecasting and recommendations and add the decision-making of agricultural production. At first, this paper introduces the mixed strategy of game theory to construct a 2-player game. Next, in consideration of the pursuit of the maximization of interests, the decision-making associated with dynamic grain crop rotation which will be extended to a multiple stable dynamic grain crop rotation strategy cycle, then develop a stationary Markov process as the basis for a final decision. Finally, this paper attempts to add foreign competitors to import grain in the domestic market, thus to construct 3-palyer game and extend the decision model for domestic producers for further studies
Table of Contents
Content Page
Acknowledgements I
Chinese Abstract II
Abstract III
Table of Contents IV
List of Tables VI
List of Figures VI
CHAPTER I INTRODUCTION 1
1.1. Research Background and Motivation 1
1.2. Research Problems and Limitations 2
1.3. Research Structure and Outline 3
CHAPTER II LITERATURE REVIEW 7
2.1. Reviews on Modern Agricultural and Crop Rotation 7
2.2. Reviews on Natural Weather Disasters and Grain Crop Price Fluctuations 8
2.3. Reviews on Game Theory and Markov Process 9
2.4. Reviews on Decision Tree and Decision Analysis 11
CHAPTER III THE MODEL’S CONSTRUCTION 13
3.1. Model Introduction, Construction and 2-Player Game Construction 13
3.2. Decision Tree and Stable Dynamic Grain Crop Rotation Strategy Cycles. 16
3.3. The Markov Process of the Model and the Regular Markov Chain. 19
3.4. An Empirical Example of the Model 25
CHAPTER IV MODEL’S CONSTRUCTION WITH A FOREIGN COMPETITIOR 27
4.1. Model Redefined for 3-Player Game Construction. 27
4.2. Decision Tree, Stable Strategy Cycles and Markov Process. 34
CHAPTER V CONCLUSIONS 39
5.1. Conclusions 39
5.2. Future Research 40
REFERENCES 41

Adeoye I. B., Yusuf S. A., Balogun O. S. and Alabuja F (2012). Application of Game Theory to Horticultural Crops in South-West Nigeria. ARPN Journal of Agricultural and Biological Science, 7(5), 372-375.
Agrawal, R. C. & Heady, E. O. (1968). Application of game theory models in agriculture. Journal of Agricultural Economics, 19(2), 207-218.
Bullock, D. G. (1992). Crop rotation. Critical Reviews in Plant Sciences, 11(4),309-326.
Dillon, J.L. (1962). Applications of Game Theory in Agricultural Economics: Review and Requiem. Australian Journal of Agricultural and Resource Economics, 6(2), 20-35.
El-Nazer, T. & McCarl, B. A. (1986). The Choice of Crop Rotation: A Modeling Approach and Case Study. American Journal of Agricultural Economics, 68(1), 127-136.
Executive Yuan, Council of Agriculture. (2012). [AG. STATISTICS YEARBOOK 2012]. Unpublished raw data.
Freier, K. P., Schneider, U. A. and Finckh, M. (2011). Dynamic interactions between vegetation and land use in semi-arid Morocco: Using a Markov process for modeling rangelands under climate change. Agriculture, Ecosystems & Environment, 140(2011), 462-472.
Figueroa, A. M. (1995). The GATT and Agriculture: Past, Present, and Future. Kansas Journal of Law & Public Policy, 5, 93-101.
Gabriel, K. R. & Neumann, J. (1962). A Markov Chain Model for Daily Rainfall Occurrence at Tel Aviv. Quarterly Journal of the Royal Meteorological Society, 88(375), 90-95.
Gates, P. & Tong, H. (1976). On Markov Chain Modeling to Some Weather Data. Journal of Applied Meteorology and Climatology, 15(11), 1145-1151.
Green, R. (2000). Part II: Review of Key Substantive Agreements: Panel II C: Agreement on Agricultural: The Uruguay Round Agreements on Agricultural. Law and Policy in International Business, 31(3), 819-825.
Gilbert, C. L. & Morgan, C. W. (2010). Food price volatility. Philosophical Transactions B, 365(1554), 3023-3034.
Gladwin, C. H. (1983). Contributions of decision-tree methodology to a farming systems program. Human Organization, 42(2), 146-157.
Hazell, P. B. R. (1970). Game Theory - an Extension of Its Application to Farm Planning Under Uncertainty. Journal of Agricultural Economics, 21(2), 239-252.
Jones, P.G. & Thornton, P.K. (1997). Spatial and Ttemporal Variability of Rainfall Related to a Tthird-Order Markov Model. Agricultural and Forest Meteorology, 86(1-2), 127-138.
Judge, G.G. & Swanson, E. R. (1962). Markov Chains Basic Concepts and Suggested Uses in Agricultural Economics. Australian Journal of Agricultural and Resource Economics, 6(2), 49-61.
Kalantari, A. S. & Cabrera, V. E. (2012). The Effect of Reproductive Performance on the Dairy Cattle Herd Value Assessed by Integrating a Daily Dynamic Programming Model with a Daily Markov Chain Model. Journal of Dairy Science, 95(10), 6160-6170.
Martis, J.H., Saito, T., Grant, W.E., Iwig, W.C. and Ritchie, J.T. (1985). A Markov Chain Approach to Crop Yield Forecasting. Agricultural Systems, 18(3), 171-187.
Michael Sullivan (2007). Finite mathematics: An applied approach. NJ: Wiley.
Musshoff, O. (2012). Growing short rotation coppice on agricultural land in Germany: a real options approach. Biomass and Bioenergy, 41, 73-85.
Nash, J. F., (1950). Equilibrium points in n-person games. Proceedings of the National Academy of Sciences, 36, 48-49.
Panigrahy, S. & Sharma, S.A. (1997). Mapping of crop rotation using multidate Indian remote sensing satellite digital data. ISPRS Journal of Photogrammetry and Remote Sensing, 52(2), 85-91.
Rasmusen, E. (2001). Games and Information: An Introduction to Game Theory, Oxford, Blackwell Publishing.
Wilson, A. G. & Birkin, M. (1987). Dynamic models of agricultural location in a spatial interaction framework. Geographical Analysis, 19(1), 31-56.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top