|
Ali, S., Mehmood, C., Khawja, A., Nasim R., Jawad, M., Usman, S., Khan, S., Salahuddin, S., & Ihsan, M.(2014). Statistical weather data analysis for wide area smart grid operations, in IEEE International Conference on Electro/Information Technology (EIT),doi:10.1109/EIT.2014.6871808.
Bartlett, J., Prabhu, V., & Whaley, J. (2017). Acctionnet: A dataset of human activity recognition using on-phone motion sensors. In Proceedings of the 34th International Conference on Machine Learning.
Bhola, R., Krishna, N. H., Ramesh, K., Senthilnath, J., & Anand, G.(2018). Detection of the power lines in UAV remote sensed images using spectral-spatial methods, J. Environ. Manage., vol. 206, pp. 1233–1242.
Braun, M.R., Altan, H., & Beck, S.B.M.(2014).Using regression analysis to predict the future energy consumption of a supermarket in the UK Appl. Energy, pp. 305-313. Byeon, Y.H., Kwak, K.C. (2014). Facial expression recognition using 3d convolutional neural network. Int J Adv Comput Sci Appl 5(12):107–112.
Campanharo, A. S., Sirer, M. I., Malmgren, R. D., Ramos, F. M,. & Amaral, L. A. N. (2011). Duality between time series and networks. PloS one 6(8):e23378.
Eckmann, J. P., Oliffson Kamphorst, S., & Ruelle, D.(1987).Recurrence plots of dynamical systems, Europhys. Lett. 4, 973.
Esmaeilzadeh, S., Belivanis.D.I., Pohl, K.M., & Adeli, E.(2018).End-To-End Alzheimer’s Disease Diagnosis and Biomarker Identification. MICCAI arXiv:1810.00523v1.
Gamboa,J.(2017). Deep Learning for Time-Series Analysis. University of Kaiserslautern, Kaiserslautern, Germany, arXiv:1701.01887.
Hartigan, J.A., & Wong, M.A.(1979). Algorithm AS136: A k-means Clustering Algorithm, Applied Statistics, vol. 28, pp. 100-108.
Hatami, N., Gavet, Y., & Debayle, J. (2017) .Classification of time-series images using deep convolutional neural networks. In: International Conference on Machine Vision.
Ismail Fawaz, H ., Forestier, G., Weber, J., Idoumghar, L.,& Muller, P.-A.( 2018). Deep learning for time series classification: a review, ArXiv. :1809.04356v2.
Ji, S., Xu, W., Yang, M.,& Yu, K.(2013). 3D convolutional neural networks for human action recognition. PAMI, 35(1):221– 231. Jia, B., Pham, K., Blasch, E., Wang, Z., Shen, D., & Chen, G. (2018). Space Object Classification Using Deep Neural Networks, IEEE Aerospace Conf.
Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882.
Krizhevsky, A.(2010). Convolutional deep belief networks on cifar-10. Unpublished manuscript.
Krizhevsky, A., Sutskever, I., & Hinton, G.E.( 2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pp. 1097–1105.
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1(4):541–551.
LeCun, Y., Bottou, L., Bengio Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.
LeCun, Y., Bengio, Y., & Hinton G.(2015). Deep learning. Nature 521, 436–444 doi:10.1038/nature14539 pmid:2601744.
Li, H.,Lin, Z., Shen, X., Brandt, J., & Hua, G.(2015).A convolutional neural network cascade for face detection,” in IEEE Conf. Comput. Vis. Pattern Recognit. pp. 5325–5334.
Lin, G., & Shen, W. (2018). Research on convolutional neural network based on improved Relu piecewise activation function. Procedia Computer Science Volume 131, Pages 977-984.
Łuczak,M.(2017).Univariate and multivariate time series classification with parametric integral dynamic time warping, Journal of Intelligent and Fuzzy Systems 33(4), 2403–2413.
MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, eds. L.M. LeCam and J. Neyman, University of California Press, pp. 281–297.
Mitiche, I., Morison, G., Nesbitt, A., Hughes-Narborough, M., Stewart, B. G., & Boreham, P.(2018). Imaging Time Series for the Classification of EMI Discharge Sources,.Sensors. doi: 10.3390/s18093098.
Nie, D., Zhang, H., Ehsan, A., Lyan, L., & Dinggang, S .(2016) .3D deep learning for multi- modal imaging-guided survival time prediction of brain tumor patients. In: MICCAI 14th Int Conf (Vision, Pattern Recognition, Graph) 9900:697. doi:10.1007/978-3-319-46720-7.
Oyelade, O. J., Oladipupo, O. O., & Obagbuwa, I. C. (2010).Application of K-Means Clustering algorithm for prediction of Students’ Academic Performance, (IJCSIS) International Journal of Computer Science and Information Security, Vol. 7, No. 1, pages 292–295.
Sakoe, H., & Chiba, S.(1978).Dynamic programming algorithm optimization for spoken word recognition.IEEE Trans. Acoust., Speech Signal Proc., 26 (1978), pp. 43-49.
Seto, S., Zhang, W.,& Zhou, Y.(2015).Multivariate time series classification using dynamic time warping template selection for human activity recognition,” in Computational Intelligence, 2015 IEEE Symposium Series on. IEEE, pp. 1399–1406.
Simonyan, K., & Zisserman, A. (2014).Two-stream convolutional networks for action recognition in videos. In NIPS.
Springenberg, J.T., Dosovitskiy, A., Brox, T., & Riedmiller, M.(2014).Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806.
Tran, D., Bourdev, L.D., Fergus, R., Torresani, L., & Paluri, M. (2015). Learning spatiotemporal features with 3D convolutional networks. In: ICCV, pp. 4489–4497.
Tsai, Y.C., Chen, J.H., & Wang, C.C.(2019). Encoding Candlesticks as Images for Patterns Classification Using Convolutional Neural Networks. Computational Engineering, Finance, and Science. arXiv:1901.05237.
Wallnerström, C.J., Setréus, J., Hilber, P., Tong, F., & Bertling , L. (2010). Model of capacity demand under uncertain weather.. IEEE 11th International Conference on Probabilistic Methods Applied to Power Systems.doi: 10.1109/PMAPS.2010.5528841.
Wang, Z., & Oates, T. (2015). Encoding time series as images for visual inspection and classification using tiled convolutional neural networks. In: Workshops at the TwentyNinth AAAI Conference on Artificial Intelligence.
|