|
[1] Y.-C. Huang and T.-C. Lee, “A 10-bit 100 MS/s 4.5 mW Pipelined ADC with a Time Sharing Techniques,” IEEE Trans. Circuits Syst. I, vol. 58, no. 6, pp. 1157–1166, June, 2011. [2] J. Chu, L. Brooks, and H.-S. Lee, " A Zero-Crossing Based 12b 100MS/s Pipelined ADC with Decision Boundary Gap Estimation Calibration, " Symp. on VLSI Circuits Dig. Tech. Papers, Jun. 2010. [3] B. Hershberg, et al., “Ring Ampiflier for Switched-Capacitor Circuits,” ISSCC Dig. Tech. Papers, pp. 460-461, Feb. 2012. [4] ] J. Kim and B. Murmann, "A 12-bit, 30-MS/s, 2.95-mW Pipelined ADC Using Single-Stage Class-AB Amplifiers and Deterministic Background Calibration," IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2141-2151, Sep. 2012. [5] H.-H. Boo, D.-S. Boning, and H.-S. Lee, “A 12b 250MS/s Pipelined ADC with Virtual Ground Reference Buffers,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2015, pp. 1-3. [6] Y. Lim and M. P. Flynn, “A 100 MS/s 10.5 b 2.46 mW comparator-less pipeline ADC using self-biased ring amplifiers,” in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 202-203. [7] Jorge Lagos, et al, “A Single-Channel, 600Msps, 12bit, Ringamp-Based Pipelined ADC in 28nm CMOS,” 2017 Symp. on VLSI Circuits, 2017, pp. 1-2. [8] C.-C Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, C.-M. Huang, and C.-H. Huang, “A 10b 100MS/s 1.13mW SAR ADC with binary scaled error compensation,” in IEEE ISSCC Dig. Tech. Papers, pp.386–387, Feb. 2010. [9] J.-P. Mathew, L. Kong, and B. Razavi, “A 12-bit 200-MS/s 3.4-mW CMOS ADC with 0.85-V Supply,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2015, pp. 66-67. [10] D. Luu et al., “A 12b 61dB SNDR 300MS/s SAR ADC with inverterbased preamplifier and common-mode-regulation DAC in 14nm CMOS FinFET,” in 2017 Symposium on VLSI Circuits, Jun 2017. [11] M. Inerfield, et al., “An 11.5-ENOB 100-MS/s 8mW Dual-Reference SAR ADC in 28nm CMOS,” IEEE Symp. VLSI Circuits, pp. 192-193, June 2014. [12] Chun C. Lee, et al., “A SAR-Assisted Two-Stage Pipeline ADC,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 859-869, Apr. 2011. [13] H. Huang, S. Sarkar, B. Elies, and Y. Chiu, “28.4 a 12b 330ms/s pipelined-sar adc with pvt-stabilized dynamic amplifier achieving lt;1db sndr variation,” in 2017 IEEE International Solid-State Circuits Conference (ISSCC), pp. 472–473, Feb 2017. [14] K. Yoshioka, T. Sugimoto, N. Waki, S. Kim, D. Kurose, H. Ishii, M. Furuta and A. Sai, “ A 0.7V 12b 160MS/s 12.8fJ/conv-step Pipelined-SAR ADC in 28nm CMOS with Digital Amplifier Technique , ” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Mar. 2017, pp. 478–479. [15] Y. Lim, and M. P. Flynn, “A calibration-free 2.3 mW 73.2 dB SNDR 15b 100 MS/s four-stage fully differential ring amplifier based SARassisted pipeline ADC,” in Symp. VLSI Circuits Dig. Tech. Papers, June 2017. [16] Y.-H. Chung and C.-W. Yen, “ An 11-bit 100-MS/s Subranged-SAR ADC in 65-nm CMOS, ” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, Vol. 25, No. 12, pp. 3434 -- 3443, Aug. 2017. [17] C.-C. Liu, “A 0.35mW 12b 100MS/s SAR-assisted digital slope ADC in 28nm CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2016, pp. 462–463. [18] Z. Zhang, W.-C Yu and G.-J Xie, “ A 10-bit 100-MS/s hybrid ADC based on flash-SAR architecture ,” IEEE Int. Conf. on Solid-State and Integrated Circuit Tech. Papers, Aug. 2016, pp. 725-727. [19] R. Kapusta, J. Shen, S. Decker, H. Li, and E. Ibaragi, “A 14b 80MS/s SAR ADC with 73.6dB SNDR in 65nm CMOS, ISSCC, session 26, 2013. [20] W.-H. Tseng, W.-L. Lee, C.-Y. Huang, and P.-C. Chiu, “A 12-bit 104 MS/s SAR ADC in 28 nm CMOS for Digitally-Assisted Wireless Transmitters,” IEEE J. Solid-State Circuits, vol. 51, no. 10, pp. 2222-2231, Jul. 2016. [21] W. Liu, P. Huang, and Y. Chiu, “A 12 b 22.5/45 MS/s 3.0 mW 0.059 mm2 CMOS SAR ADC achieving over 90 dB SFDR,” in IEEE ISSCC Dig. Tech. Paper, Feb. 2010, pp. 380–381. [22] Y.-H. Chung, M.-H. Wu, and H.-S. Li, “A 12-bit 8.47-fJ/conversion-step capacitor-swapping SAR ADC in 110-nm CMOS,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 1, pp. 10–18, Jan. 2015. [23] Y.-H. Chung, C.-W. Yen, and M.-H. Wu, “A 24-μW 12-b 1-MS/s SAR ADC with two-step decision DAC switching in 110-nm CMOS,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 11, pp. 3334–3344, Nov. 2016. [24] Y.-H. Chung, C.-W. Yen, and P.-K. Tsai, “A 12-bit 40-MS/s SAR ADC With a Fast-Binary-Window DAC Switching Scheme,” Int. J. Circuit Theory Appl., vol. 46, no. 4, pp. 748–763, Apr. 2018. [25] M. Dessouky and A. Kaiser, “Input switch configuration suitable for rail-to-rail operation of switched-opamp circuits,” IEE Electron. Lett., vol. 35, pp. 8-10, Jan. 1999. [26] B. Wicht, T. Nirschl and D. Schmitt-Landsiedel, "Yield and speed optimization of a latch-type voltage sense amplifier," in IEEE Journal of Solid-State Circuits, vol. 39, no. 7, pp. 1148-1158, July 2004. [27] M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, “A low-noise self- calibrating dynamic comparator for high-speed ADCs,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2008, pp. 269–272. [28] S. W. Chen and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2669–2680, 2006. [29] Liu, C.C., Chang, S.J., Huang, G.Y., and Lin, Y.Z.: “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure“, IEEE J. Solid-State Circuits, 2010, 45, (4), pp. 731–740. [30] Y.-S. Hu, C.-H. Shih, H.-T. Tai, H.-W. Chen, H.-S. Chen , “A 0.6V 6.4fJ/conversion-step 10-bit 150MS/s subranging SAR ADC in 40-nm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2014, pp. 81. [31] B.P. Ginsburg, and A.P. Chandrakasan, “500-MS/s 5-bit ADC in 65nm CMOS with split capacitor array,” IEEE Journal of Solid-State Circuits, vol. 42, no. 4, pp. 739–747, Apr. 2007. [32] C. C. Liu, S. J. Chang, G. Y. Huang, Y. Z. Lin, C. M. Huang, C. H. Huang, L. Bu, and C. C. Tsai, “A 10 b 100 MS/s 1.13 mW SAR ADC with binary-scaled error compensation,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2010, pp. 386–387. [33] Y.-H. Chung, W.-S. Rih, and C.-W. Chang , “ A 6-bit 1.3-GS/s Ping-Pong Domino-SAR ADC in 55nm CMOS ,”accepted by TCAS-II. [34] J. Luo, J. Li, N. Ning, Y. Liu and Q. Yu, “ A 0.9-V 12-bit 100-MS/s 14.6-fJ/Conversion-Step SAR ADC in 40-nm CMOS ,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. PP, no. 99, pp. 1–9, Jul. 2018. [35] S. H. Lewis, “Optimizing the stage resolution in pipelined, multistage, analog-to-digital converters for video-rate applications,” IEEE Trans. Circuits Syst. II, vol. 39, no. 8, pp. 516–523, Aug. 1992. [36] Y. S. Hu, et al, "A 0.6V 6.4fJ/conversion-step 10-bit 150MS/s subranging SAR ADC in 40nm CMOS," 2014 IEEE Asian Solid-State Circuits Conference (A-SSCC), KaoHsiung, 2014, pp. 81-84.
|