|
1. Bentley, R. and R. Meganathan, Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiology and Molecular Biology Reviews, 1982. 46(3): p. 241-280. 2. Reid, G., J. Howard, and B.S. Gan, Can bacterial interference prevent infection? Trends in Microbiology, 2001. 9(9): p. 424-428. 3. Boyce, T.G., D.L. Swerdlow, and P.M. Griffin, Escherichia coli O157: H7 and the hemolytic-uremic syndrome. New England Journal of Medicine, 1995. 333(6): p. 364-368. 4. Moon, H.W., et al., Attaching and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines. Infection and Immunity, 1983. 41(3): p. 1340-1351. 5. Roe, A., D. Hoey, and D. Gally, Regulation, secretion and activity of type III-secreted proteins of enterohaemorrhagic Escherichia coli O157. Biochemical Society Transactions, 2003. 31: p. 98-103. 6. O'Brien, A.D. and R.K. Holmes, Shiga and Shiga-like toxins. Microbiology and Molecular Biology Reviews, 1987. 51(2): p. 206-220. 7. O'Brien, A.D. and G.D. LaVeck, Purification and characterization of a Shigella dysenteriae 1-like toxin produced by Escherichia coli. Infection and Immunity, 1983. 40(2): p. 675-683. 8. Strockbine, N.A., et al., Two toxin-converting phages from Escherichia coli O157: H7 strain 933 encode antigenically distinct toxins with similar biologic activities. Infection and Immunity, 1986. 53(1): p. 135-140. 9. Tesh, V.L. and A.D. O'Brien, The pathogenic mechanisms of Shiga toxin and the Shiga-like toxins. Molecular Microbiology, 1991. 5(8): p. 1817-1822. 10. Schmidt, H., L. Beutin, and H. Karch, Molecular analysis of the plasmid-encoded hemolysin of Escherichia coli O157: H7 strain EDL 933. Infection and Immunity, 1995. 63(3): p. 1055-1061. 11. Schmidt, H., H. Karch, and L. Beutin, The large-sized plasmids of enterohemorrhagic Escherichia coli O157 strains encode hemolysins which are presumably members of the E. coliα-hemolysin family. FEMS Microbiology Letters, 1994. 117(2): p. 189-196. 12. Donnenberg, M.S., J.B. Kaper, and B.B. Finlay, Interactions between enteropathogenic Escherichia coli and host epithelial cells. Trends in Microbiology, 1997. 5(3): p. 109-114. 13. Frankel, G., et al., Enteropathogenic and enterohaemorrhagic Escherichia coli: more subversive elements. Molecular Microbiology, 1998. 30(5): p. 911-921. 14. Kenny, B., et al., Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell, 1997. 91(4): p. 511-520. 15. Sansonetti, P.J., et al., Enterohemorrhagic Escherichia coli O157: H7 produces Tir, which is translocated to the host cell membrane but is not tyrosine phosphorylated. Infection and Immunity, 1999. 67(5): p. 2389-2398. 16. Gophna, U., E.Z. Ron, and D. Graur, Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene, 2003. 312: p. 151-163. 17. Donnenberg, M.S., L.C. Lai, and K.A. Taylor, The locus of enterocyte effacement pathogenicity island of enteropathogenic Escherichia coli encodes secretion functions and remnants of transposons at its extreme right end. Gene, 1997. 184(1): p. 107-114. 18. Elliott, S.J., et al., The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Molecular Microbiology, 1998. 28(1): p. 1-4. 19. Hueck, C.J., Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiology and Molecular Biology Reviews, 1998. 62(2): p. 379-433. 20. Cornelis, G.R., The type III secretion injectisome. Nature Reviews Microbiology, 2006. 4(11): p. 811-825. 21. Moraes, T.F., T. Spreter, and N.C.J. Strynadka, Piecing together the Type III injectisome of bacterial pathogens. Current Opinion in Structural Biology, 2008. 18(2): p. 258-266. 22. Garmendia, J., G. Frankel, and V.F. Crepin, Enteropathogenic and enterohemorrhagic Escherichia coli infections: translocation, translocation, translocation. 2005, Am Soc Microbiol. p. 2573-2585. 23. Galan, J.E. and H. Wolf-Watz, Protein delivery into eukaryotic cells by type III secretion machines. Nature, 2006. 444: p. 567-573. 24. Creasey, E.A., et al., Yeast two-hybrid system survey of interactions between LEE-encoded proteins of enteropathogenic Escherichia coli. 2003, Soc General Microbiol. p. 2093-2106. 25. Koster, M., et al., The outer membrane component, YscC, of the Yop secretion machinery of Yersinia enterocolitica forms a ring-shaped multimeric complex. Molecular Microbiology, 1997. 26(04): p. 789-797. 26. Wilson, R.K., et al., Role of EscF, a putative needle complex protein, in the type III protein translocation system of enteropathogenic Escherichia coli. Cellular Microbiology, 2001. 3(11): p. 753-762. 27. Ide, T., et al., Characterization of translocation pores inserted into plasma membranes by type III-secreted Esp proteins of enteropathogenic Escherichia coli. Cellular Microbiology, 2001. 3(10): p. 669-679. 28. Iizumi, Y., et al., The enteropathogenic E. coli effector EspB facilitates microvillus effacing and antiphagocytosis by inhibiting myosin function. Cell Host & Microbe, 2007. 2(6): p. 383-392. 29. Su, M.S.W., et al., Gene l0017 encodes a second chaperone for EspA of enterohaemorrhagic Escherichia coli O157: H7. Microbiology, 2008. 154(4): p. 1094. 30. Gauthier, A. and B.B. Finlay, Translocated intimin receptor and its chaperone interact with ATPase of the type III secretion apparatus of enteropathogenic Escherichia coli. Journal of Bacteriology, 2003. 185(23): p. 6747-6755. 31. Mellies, J.L., et al., The Per regulon of enteropathogenic Escherichia coli: identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)-encoded regulator (Ler). Molecular Microbiology, 1999. 33(2): p. 296-306. 32. Francis, M.S., H. Wolf-Watz, and A. Forsberg, Regulation of type III secretion systems. Current Opinion in Microbiology, 2002. 5(2): p. 166-172. 33. DiRita, V.J., et al., The locus of enterocyte effacement (LEE)-encoded regulator controls expression of both LEE-and non-LEE-encoded virulence factors in enteropathogenic and enterohemorrhagic Escherichia coli. Infection and Immunity, 2000. 68(11): p. 6115-6126. 34. Russell, R.M., et al., QseA and GrlR/GrlA Regulation of the Locus of Enterocyte Effacement Genes in Enterohemorrhagic Escherichia coli? Journal of Bacteriology, 2007. 189(14): p. 5387-5392. 35. Lio, J.C.W. and W.J. Syu, Identification of a negative regulator for the pathogenicity island of enterohemorrhagicEscherichia coli O157: H7. Journal of Biomedical Science, 2004. 11(6): p. 855-863. 36. Deng, W., et al., Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proceedings of the National Academy of Sciences, 2004. 101(10): p. 3597-3602. 37. Huang, L. and W.J. Syu, GrlA of enterohemorrhagic Escherichia coli O 157: H 7 activates LEE 1 by binding to the promoter region. Journal of Microbiology, Immunology and Infection, 2008. 41(1): p. 9-16. 38. Barba, J., et al., A positive regulatory loop controls expression of the locus of enterocyte effacement-encoded regulators Ler and GrlA. Journal of Bacteriology, 2005. 187(23): p. 7918-7930. 39. Datsenko, K.A. and B.L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. 2000, National Acad Sciences. p. 6640-6645. 40. Combet, C., et al., Geno3D: automatic comparative molecular modelling of protein. 2002, Oxford Univ Press. p. 213-214. 41. Pallen, M.J., S.A. Beatson, and C.M. Bailey, Bioinformatics analysis of the locus for enterocyte effacement provides novel insights into type-III secretion. BMC Microbiology, 2005. 5(1): p. 9. 42. Vollmer, W. and U. Bertsche, Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. BBA-Biomembranes, 2008. 1778(9): p. 1714-1734. 43. Holtje, J.V., Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiology and Molecular Biology Reviews, 1998. 62(1): p. 181-203. 44. Suvorov, M., et al., Lytic Transglycosylase MltB of Escherichia coli and Its Role in Recycling of Peptidoglycan Strands of Bacterial Cell Wall. J. Am. Chem. Soc, 2008. 130(36): p. 11878-11879. 45. Park, J.T. and T. Uehara, How Bacteria Consume Their Own Exoskeletons (Turnover and Recycling of Cell Wall Peptidoglycan)? Microbiology and Molecular Biology Reviews, 2008. 72(2): p. 211-227. 46. Scheurwater, E., C.W. Reid, and A.J. Clarke, Lytic transglycosylases: bacterial space-making autolysins. International Journal of Biochemistry and Cell Biology, 2008. 40(4): p. 586-591. 47. Vollmer, W., et al., Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiology Reviews, 2008. 32(2): p. 259-286. 48. Koraimann, G., Lytic transglycosylases in macromolecular transport systems of Gram-negative bacteria. Cellular and Molecular Life Sciences (CMLS), 2003. 60(11): p. 2371-2388. 49. Zahrl, D., et al., Peptidoglycan degradation by specialized lytic transglycosylases associated with type III and type IV secretion systems. 2005, Soc General Microbiol. p. 3455-3467. 50. Allaoui, A., et al., Characterization of the Shigella flexneri ipgD and ipgF genes, which are located in the proximal part of the mxi locus. Infection and Immunity, 1993. 61(5): p. 1707-1714. 51. Galan, J.E. and A. Collmer, Type III secretion machines: bacterial devices for protein delivery into host cells. Science, 1999. 284(5418): p. 1322. 52. Oh, H.S., et al., Pseudomonas syringae Lytic Transglycosylases Coregulated with the Type III Secretion System Contribute to the Translocation of Effector Proteins into Plant Cells? Journal of Bacteriology, 2007. 189(22): p. 8277-8289. 53. Cherepanov, P.P. and W. Wackernagel, Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene, 1995. 158(1): p. 9-14.
|