跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/03 12:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃宥嘉
研究生(外文):Huang, Yu-Chia
論文名稱:基於量子進化演算法之智慧型強健H∞控制於多項式模糊系統
論文名稱(外文):Intelligent Robust H∞ Control of Polynomial Fuzzy Systems Using QEA
指導教授:余國瑞余國瑞引用關係鄭智湧鄭智湧引用關係
指導教授(外文):Yu, Gwo-RueyCheng, Chih-Yung
口試委員:莊智清蔡清池黃國勝余國瑞鄭智湧
口試委員(外文):Juang, Jyh-ChingTsai, Ching-ChihHwang, Kao-ShingYu, Gwo-RueyCheng, Chih-Yung
口試日期:2017-07-03
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:159
中文關鍵詞:強健性H∞準則多項式模糊控制多項式Lyapunov函數量子進化演算法
外文關鍵詞:robustH∞ criterionpolynomial fuzzy controlpolynomial Lyapunov functionQEA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:310
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文致力於多項式模糊控制系統的研究並提出多種多項式模糊控制器的設計方法,包含穩定控制器設計、強健H∞控制器設計、智慧型控制器設計與智慧型強健H∞控制器設計。針對穩定控制器與強健H∞控制器,文中採用非二次Lyapunov函數分析系統的穩定性並提出基於SOS的穩定條件,透過SOSTOOLS等數值分析軟體求解這些穩定條件來獲得控制器增益。在穩定控制器設計的研究上,探討了如何改變系統的響應速度與設計限制輸出的控制器,並提出具衰退率指標的穩定條件與輸出限制。為了對抗外部干擾與模式不確定性,本文提出強健H∞控制器設計的方法。首先,針對連續時間與離散時間的非線性系統,文中提出可描述模式不確性與外部干擾的多項式模糊控制系統,並透過H∞準則與非二次Lyapunov函數分析系統的穩定性來推導強健H∞穩定條件。為了改善穩定控制器與強健H∞控制器的性能,文中採用量子進化演算法結合SOS穩定條件的方法,提出智慧型控制器設計與智慧型強健H∞控制器設計。在這個方法裡,量子進化演算法可在找尋控制增益的過程中,同時透過SOS穩定條件確保系統的穩定性,並篩選出滿足性能要求的最佳控制增益。此外,為了提高SOS穩定條件被滿足的機率,文中採用多項式Lyapunov函數分析系統的穩定性並推導出寬鬆的穩定條件與寬鬆的強健H∞穩定條件。論文裡將透過多個模擬實驗說明每個定理的可行性與有效性。
This dissertation investigates polynomial fuzzy control systems and proposes several polynomial fuzzy controllers, including stable controller design, robust H∞ controller design, intelligent controller design, and intelligent robust H∞ controller design. System stability is analyzed using a non-quadratic Lyapunov function, and stability conditions based on the sum-of-squares (SOS) are proposed. The control gains are obtained by solving these stability conditions using numerical analysis software such as SOSTOOLS. In the study of stable controller design, methods of changing the response speed of the system are discussed, and a controller is designed to limit the output and present the decay-rate-index-based stability conditions and output constraints. In order to ensure robustness to external disturbances and model uncertainties, this dissertation presents robust H∞ controller design methods. First, polynomial fuzzy control systems, which can describe model uncertainties and external disturbances, are proposed for continuous-time and discrete-time nonlinear systems. The robust H∞ conditions are derived using the H∞ criterion and non-quadratic Lyapunov function to analyze system stability. In order to improve the performance of the stable controller and the robust H∞ controller, a method combining the quantum-inspired evolutionary algorithm (QEA) and SOS-based stability conditions is presented, and an intelligent controller and intelligent robust H∞ controller design are presented. In this method, QEA adopts the SOS-based stability conditions to guarantee system stability during the control gains search procedure. Accordingly, the optimal control gain, which is satisfied with the performance requirements, will be screened out. In addition, to enhance the probability of complying with the SOS-based stability conditions, the polynomial Lyapunov function is used to analyze closed-loop system stability, and relaxed stability and relaxed robust H∞ stability conditions are derived. Several simulations demonstrate the effectiveness and feasibility of each proposed method.
摘要 I
Abstract II
Contents III
List of Figures VI
List of Tables IX
Acronyms X
List of Abbreviations XI
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Main Contributions 5
1.3 Dissertation Outline 5
Chapter 2 Polynomial Fuzzy Control Systems 7
2.1 Polynomial Fuzzy Model 7
2.2 Polynomial Fuzzy Controller 10
2.3 SOS Decomposition and Stability Conditions 11
2.4 Application Example 13
2.5 Extended Designs 20
2.5.1 Stability Conditions with Decay Rate 20
2.5.2 Controller Design with Decay Rate 22
2.5.3 Output Constrains 25
2.5.4 Controller Design with Output Constrains 27
2.6 Summary 29
Chapter 3 Robust H∞ Control of Continuous-time Polynomial Fuzzy Systems .30
3.1 Continuous-time Polynomial Fuzzy Control System with Model Uncertainties and External Disturbances 30
3.2 Continuous-time Robust Polynomial Fuzzy Control 32
3.2.1 SOS-based Robust Stability Conditions 32
3.2.2 Numerical Example 3.1 35
3.2.3 Numerical Example 3.2 39
3.3 Continuous-time Robust H∞ Polynomial Fuzzy Control 40
3.3.1 SOS-based Robust H∞ Stability Conditions 41
3.3.2 Numerical Example 3.3 43
3.4 Summary 53
Chapter 4 Robust H∞ Control of Discrete-time Polynomial Fuzzy Systems 55
4.1 Discrete-time Polynomial Fuzzy Model 55
4.2 Discrete-time Polynomial Fuzzy Controller 57
4.3 Discrete-time Robust H∞ Polynomial Fuzzy Control 58
4.3.1 SOS-based Robust H∞ Stability Conditions 58
4.3.2 Numerical Example 4.1 60
4.4 Operation-domain-based Robust H∞ Controller Design 65
4.4.1 OD-based Robust H∞ Stability Conditions 65
4.4.2 Numerical Example 4.2 67
4.5 Summary 74
Chapter 5 SOS-based Polynomial Fuzzy Controller Design Using QEA 75
5.1 Quantum-inspired Evolutionary Algorithms 75
5.2 Polynomial-Lyapunov-function-based Stability Conditions 79
5.3 The Procedure of SOS-based QEA 80
5.4 Computer Simulations 80
5.4.1 Controller Design via SOS-based QEA 82
5.4.2 Performance Comparison with Different Approaches 90
5.4.3 Discussion on Different Order Polynomial Lyapunov Function 93
5.5 Summary 97
Chapter 6 Optimally Robust H∞ Controller Design of Polynomial Fuzzy Systems Using QEA 98
6.1 Optimally Robust H∞ Controller Design of CPFS Using QEA 98
6.1.1 SOS-based Optimally Robust H∞ Stability Conditions 99
6.1.2 Numerical Example 6.1 101
6.1.3 Relaxed SOS-based Optimally Robust H∞ Stability Conditions 107
6.1.4 Numerical Example 6.2 110
6.1.5 Numerical Example 6.3 114
6.2 Optimally Robust H∞ Controller Design of DPFS Using QEA 116
6.2.1 SOS-based Optimally Robust H∞ Stability Conditions 116
6.2.2 Numerical Example 6.4 120
6.2.3 Numerical Example 6.5 125
6.3 Summary 127
Chapter 7 Conclusions and Future Works 128
7.1 Conclusions 128
7.2 Future Works 128
References… 130
Appendix…. 138
Publication List 158
[1] T.-H. S. Li and S.-H. Tsai, “T-S fuzzy bilinear model and fuzzy controller design for a class of nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 3, pp. 494 – 506, 2007.
[2] W.-J. Wang and W.-W. Lin, “Decentralized PDC for large-scale T-S fuzzy systems,” IEEE Transactions on Fuzzy Systems, vol. 13, no. 6, pp. 779 – 786, 2005.
[3] K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. New York, NY, USA: Wiley, 2001.
[4] J. Qiu, G. Feng, and H. Gao, “Static-output-feedback H∞ control of continuous-time T-S fuzzy affine systems via piecewise Lyapunov functions,” IEEE Transactions on Fuzzy Systems, vol. 21, no. 2, pp. 245 – 261, 2013.
[5] K. Kiriakidis, “Robust stabilization of the Takagi-Sugeno fuzzy model via bilinear matrix inequalities,” IEEE Transactions on Fuzzy Systems, vol. 9, no. 2, pp. 269 – 277, 2001.
[6] H. Zhang and G. Feng, “Stability analysis and H∞ controller design of discrete-time fuzzy large-scale systems based on piecewise Lyapunov function,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 38, no. 5, pp. 1390 – 1401, 2008.
[7] J. Qiu, G. Feng, and H. Gao, “Observer-based piecewise affine output feedback controller synthesis of continuous-time T-S fuzzy affine dynamic systems using quantized measurements,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 6, pp. 1046 – 1062, 2012.
[8] H. Zhang, H. Zhong, and C. Dang, “Delay-dependent decentralized H∞ filtering for discrete-time nonlinear interconnected systems with time-varying delay based on the T-S model,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 3, pp. 431 – 443, 2012.
[9] S. F. Derakhshan, A. Fatehi, and M. G. Sharabiany, “Nonmonotonic observer-base fuzzy controller designs for discrete time T-S fuzzy systems via LMI,” IEEE Transactions on Cybernetics, vol. 44, no. 12, pp. 2557 – 2567, 2014.
[10] K. Tanaka, T. Hori, and H. O. Wang, “A multiple Lyapunov function approach to stabilization of fuzzy control systems,” IEEE Transactions on Fuzzy Systems, vol. 11, no. 4, pp. 582 – 589, Aug. 2003.
[11] F.-H. Hsiao, C.-W. Chen, Y.-W. Liang, S.-D. Xu, and Q.-L. Chiang, “T-S fuzzy controller s for nonlinear interconnected systems with multiple time delays,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, no. 9, pp. 1883 – 1893, 2005.
[12] F.-H. Hsiang, J.-D. Hwang, C.-W. Chen, and Z.-R. Tsai, “Robust stabilization of nonlinear multiple time-delay large-scale systems via decentralized fuzzy control,” IEEE Transactions on Fuzzy Systems, vol. 13, no. 1, pp. 125 – 163, 2005.
[13] S. H. Kim and P.G. Park, “H∞ state-feedback control design for fuzzy systems using Lyapunov functions with quadratic dependence on fuzzy weighting functions,” IEEE Transactions on Fuzzy Systems, vol. 16, no. 6, pp. 1655 – 1663, 2008.
[14] S. H. Kim and P.G. Park, “Observer-based relaxed H∞ control for fuzzy systems using a multiple Lyapunov function,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 2, pp. 477 – 484, 2009.
[15] M. Chadli and T. N. Guerra, “LMI solution for robust static output feedback control of discrete Takagi-Sugeno fuzzy models,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 6, pp. 1160 – 1165, 2012.
[16] K. Tanaka, H. Yoshida, H. Ohtake, and H. O. Wang, “A sum-of-squares approach to modeling and control of nonlinear dynamic systems with polynomial fuzzy systems,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 4, pp. 911 – 922, 2009.
[17] A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, , P. Seiler, and P. A. Parrilo, SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB, Version 3.00, California Institute of Technology, Pasadena, 2013.
[18] P. Seiler, SOSOPT: A Toolbox for Polynomial Optimization, Version 2.00, University of Minnesota, Minnesota, 2010.
[19] J. Lofberg, “YALMIP: A toolbox for modeling and optimization in MATLAB,” in Proc. IEEE International Conference on Robotics and Automation, 2004, pp. 284 – 289.
[20] D. Henrion, J. B. Lasserre, and J. Löfberg, GloptiPoly 3: Moments, Optimization and Semidefinite Programming, Optimization Methods and Software, vol. 24, no. 4, pp. 761 – 779, 2009.
[21] A. Sala and C. Ario, “Polynomial fuzzy models for nonlinear control: A Taylor series approach,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 6, pp. 1284 – 1295, 2009.
[22] K. Tanaka, H. Ohtake, and H. O. Wang, “Guaranteed cost control of polynomial fuzzy systems via a sum of squares approach,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 2, pp. 561 – 567, 2009.
[23] K. Tanaka, H. Ohtake, T. Seo, M. Tanaka, and H. O. Wang, “Polynomial fuzzy observer designs: A sum-of-squares approach,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 5, pp. 1330 – 1342, 2012.
[24] H. K. Lam, L. D. Seneviratne, and X. Ban, “Fuzzy control of non-linear systems using parameter-dependent polynomial fuzzy model,” IET Control Theory and Applications, vol. 6, no. 11, pp. 1645 – 1653, 2012.
[25] H. K. Lam and J. C. Lo, “Output regulation of polynomial-fuzzy-model-based control systems,” IEEE Transactions on Fuzzy Systems, vol. 21, no. 2, pp. 262 – 274, 2013.
[26] H. K. Lam, “Stabilization of nonlinear systems using sampled-data output-feedback fuzzy controller based on polynomial-fuzzy-model-based control approach,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 1, pp. 258 – 267, 2012.
[27] M. Narimani and H. K. Lam, “SOS-based stability analysis of polynomial fuzzy-model-based control systems via polynomial membership functions,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 5, pp. 862 – 871, 2010.
[28] H. K. Lam and L. D. Seneviratne, “Stability analysis of polynomial fuzzy-model-based control systems under perfect/imperfect premise matching,” IET Control Theory and Applications, vol. 5, no. 15, pp. 1689 – 1697, 2011.
[29] H. K. Lam, “Polynomial fuzzy-model-based control systems: Stability analysis via piecewise-linear membership functions,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 3, pp. 588 – 593, 2011.
[30] H. K. Lam, M. Narimani, H. Li, and H. Liu, “Stability analysis of polynomial-fuzzy-model-based control systems using switching polynomial Lyapunov function,” IEEE Transactions on Fuzzy Systems, vol. 21, no. 5, pp. 800 – 813, 2013.
[31] H. K. Lam and S.-H. Tsai, “Stability analysis of polynomial-fuzzy-model-based control systems with mismatched premise membership functions,” IEEE Transactions on Fuzzy Systems, vol. 22, no. 1, pp. 223 – 229, 2014.
[32] K. Tanaka, M. Tanaka, Y.-J. Chen, and H. O. Wang, “A new sum-of-squares design framework for robust control of polynomial fuzzy systems with uncertainties,” IEEE Transactions on Fuzzy Systems, vol. 24, no. 1, pp. 94 – 110, 2016.
[33] K. Cao, X. Z. Gao, T. Vasilakos, and W. Pedrycz, “Analysis of stability and robust stability of polynomial fuzzy model-based control systems using a sum-of-squares approach,” Soft Computing, vol. 18, no. 3, pp. 433 – 442, 2014.
[34] B. W. Sanjaya, R. T. Bambang, and A. Syaichu-Rohman, “H∞ control of polynomial fuzzy systems: a sum of squares approach,” Journal of Engineering and Technological Sciences, vol. 46, no. 2, pp. 152 – 169, 2014.
[35] H. Han and Y. Higaki, “Polynomial fuzzy controller design with disturbance observer using the SOS-based approach,” IEEJ Transactions on Electrical and Electronic Engineering, vol. 10, no. 4, pp. 458 – 464, 2015.
[36] H. Han, “An observer-based controller for a class of polynomial fuzzy system with disturbance,” IEEJ Transactions on Electrical and Electronic Engineering, 2015, DOI: 10.1002/22211
[37] H. Han and H. K. Lam, “Polynomial controller design using disturbance observer,” Journal of Advanced Computational Intelligence and Intelligent Informatics, vol. 19, no. 3, pp. 439 – 446, 2015.
[38] K. Tanaka, H. Ohtake, and H. O. Wang, “An SOS-based stable control of polynomial discrete fuzzy systems,” in Proc. American Control Conference, Seattle, Washington, USA, 2008, pp. 4875 – 4880.
[39] J. L. Pitarch and A. Sala, “Multicriteria fuzzy-polynomial observer design for a 3DoF nonlinear electromechanical platform,” Engineering Applications of Artificial Intelligence, vol. 30, pp. 96 – 106, 2014.
[40] Y. Wang, H. Zhang, J. Zhang, and Y. Wang, “Discrete-time polynomial fuzzy observer designs via a sum of squares approach,” in Proc. International Joint Conference on Neural Networks, 2014, pp. 3826 – 3830.
[41] J. L. Pitarch and A. Sala, “Discrete fuzzy polynomial observers,” in Proc. Mediterranean Conference on Control and Automation, 2012, pp. 819 – 823.
[42] Y.-J. Chen, M. Tanaka, K. Tanaka, H. Ohtake, and H. O. Wang, “Discrete polynomial fuzzy systems control,” IET Control Theory and Applications, vol. 8, no. 4, pp. 288 – 296, 2014.
[43] W. Li and W. Wang, “Guaranteed cost control for polynomial discrete fuzzy time delay systems by sum-of-squares approach,” in Proc. International Conference on Information and Computing Science, 2012, pp. 178 – 181.
[44] K. Tanaka, H. Ohtake, and H. O. Wang, “A sum of squares approach to guaranteed cost control of polynomial discrete fuzzy systems,” in Proc. International Federation of Automatic Control, vol. 41, no.2, 2008, pp. 6861 – 6866.
[45] Y. Wang, H. Zhang, Y. Wang, and J. Zhang, “Stability analysis and controller design of discrete-time polynomial fuzzy time-varying delay systems,” Journal of the Franklin Institute, vol. 352, no. 12, pp. 5661 – 5685, 2015.
[46] F. Zhang, L. Li, and W. Wang, “Stability and stabilization for a class of polynomial discrete fuzzy systems with time delay by sum-of-squares optimization,” in Proc. International Conference on Fuzzy Systems and Knowledge Discovery, 2011, vol. 2, pp. 713 – 717.
[47] A. Nasiri, S. K. Nguang, and A. Swain, “Robust fault estimation of nonlinear systems using SOS approach,” in Proc. International Symposium on Mechatronics and its Applications, 2015, pp. 1 – 5.
[48] T.W. Lau, C.Y. Chung, K.P. Wong, T.S. Chung, and S.L. Ho, “Quantum-inspired evolutionary algorithm approach for unit commitment,” IEEE Transactions on Power Systems, vol. 24, no. 3, pp. 1503 – 1512, 2009.
[49] K.-H. Han and J.-H. Kim, “Quantum-inspired evolutionary algorithm for a class of combinatorial optimization,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 6, pp. 580 – 593, 2002.
[50] M. D. Platel, S. Schliebs, and N. Kasabov, “Quantum-inspired evolutionary algorithm: A multimodel EDA,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 6, pp. 1218 – 1232, 2009.
[51] K. H. Han and J. H. Kim, “Quantum-inspired evolutionary algorithms with a new termination criterion, Hε gate, and two-phase scheme,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 2, pp. 156 – 169, 2004.
[52] S. L. Ho, S. Yang, P. Ni, and J. Huang, “A quantum-inspired evolutionary algorithm for multi-objective design,” IEEE Transactions on Magnetics, vol. 49, no. 5, pp. 1609 – 1612, 2013.
[53] J. G. Vlachogiannis and K. Y. Lee, “Quantum-inspired evolutionary algorithm for real and reactive power dispatch,” IEEE Transactions on Power Systems, vol. 23, no. 4, pp. 1627 – 1636, 2008.
[54] C. Y. Chung. H. Yu, and K. P. Wong, “An advanced quantum-inspired evolutionary algorithm for unit commitment’, IEEE Transactions on Power Systems, vol. 26, no. 2, pp. 847 – 854, 2011.
[55] J. C. Chen, “Application of quantum-inspired evolutionary algorithm to reduce PAPR of an OFDM signal using partial transmit sequences technique,” IEEE Transactions on Broadcasting, vol. 56, no. 1, pp. 110 – 113, 2010.
[56] R. Ordonez and K. M. Passino, “Stable Multi-Input Multi-Output Adaptive Fuzzy /Neural Control,” IEEE Transactions on Fuzzy Systems, vol. 7, no. 3, pp. 345 – 353, 1999.
[57] H.K. Lam and L.D. Seneviratne,” LMI-based stability design of fuzzy controller for nonlinear system,” IET Control Theory and Applications, vol. 1, no. 1, January 2007.
[58] E. Pawluszewicz and Z. Bartosiewicz, “Euler’s discretization and dynamic equivalence of nonlinear control systems,” Nonlinear control in the year 2000 volume 2, Springer, London, U.K., 2001, pp. 183 – 191.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top