跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 06:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林智雄
研究生(外文):LIM JASON TZE XIONG
論文名稱:影響NF薄膜濃度極化因子之探討— 離子種類、濃度及掃流速度
論文名稱(外文):Factors Influencing Concentration Polarization in NF Membranes – Ionic Charges, Feed Concentrations and Cross-Flow Velocities
指導教授:莊順興莊順興引用關係
指導教授(外文):CHUANG, SHUN-HSING
口試委員:王順成張維欽張時獻
口試委員(外文):WANG, SHUN-CHENGCHANG, WEI-CHINCHANG, SHIH-HSIEN
口試日期:2018-06-28
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:環境工程與管理系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:128
中文關鍵詞:濃度極化奈米過濾實驗條件薄膜質傳理論質傳係數阻力串聯模式
外文關鍵詞:Concentration polarizationNanofiltrationOperating variablesFilm theoryMass transfer coefficientResistance-in-series model
相關次數:
  • 被引用被引用:3
  • 點閱點閱:501
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
奈米過濾(Nanofiltration, NF)薄膜程序因其選擇性而在近幾年代受到極大關注。本研究探討兩種NF薄膜 (NF270、NSK98) 在固定4 bars透膜壓差下的通量及鹽類去除率。其中實驗條件設為不同價數的硫酸鹽類溶液、進流液掃流速度以及溶液濃度。最後,利用薄膜質傳理論 (Film theory) 以及阻力串聯模式 (Resistance-in-series) 分析及量化兩個薄膜所受到的濃度極化 (Concentration Polarization) 現象。
研究結果顯示NF270薄膜的純水通量高於NSK98薄膜,表示其具有較佳的透水性。兩個薄膜的透水性分別為14.99 L/m²-hr-bar及10.40 L/m²-hr-bar。兩種薄膜對鹽類溶液中的鈉、鎂及鋁離子去除率分別為87%、99.1%及99.7%。NSK98薄膜的去除率也稍微高過NF270。薄膜的去除機制辨認為位阻排斥、Donnan排斥及雙電排斥。
增加掃流速度因促進剪切力而可減緩濃度極化的效應,導致通量及去除率上升。反之,增加進流液濃度會增加薄膜兩邊的滲透壓差,導致更多溶質累積在膜表上而降低通量及去除率。
溶質在過濾程序中的物質傳輸受濃度極化影響,其中在低流速及高濃度的條件下,極化效應較顯著。增加掃流速度可增加質傳係數,因此降低濃度極化層的厚度。
雖然積垢在本研究中視為可略,兩個薄膜所受到的濃度極化效應可能不同。NF270薄膜因通量較高,導致較多溶質被截留在膜表上,較難反擴散回巨相溶液中而形成較薄但較稠密的極化層,因此濃度極化係數較高。NSK98薄膜因通量較小,而去除率較佳,導致溶質較容易反擴散回巨相溶液,形成較厚但較稀疏的極化層,因此濃度極化對過濾產生的阻力較大。

Nanofiltration (NF) membrane processes have gained much attention over the past decades due to their selective rejection properties. The performance in relation to permeate flux and sulfate salt rejection under 4 bars constant transmembrane pressure of two commercial NF membranes (NF270 and NSK98) was examined in this study by varying the feed salt cation, cross-flow velocity and salt solution concentration. The concentration polarization effect encountered by the membranes was analyzed using the film theory and resistance-in-series model.
Results showed that the permeability of the NF270 membrane was significantly higher than that of NSK98, which were 14.99 L/m²-hr-bar and 10.40 L/m²-hr-bar respectively. However, both membranes displayed high rejection of cations, in which sodium, magnesium and aluminum ion rejection rates were over 87%, 99.1% and 99.7%. Furthermore, NSK98 had a slightly higher rejection than NF270. The main rejection mechanisms of salt solutions were identified as steric hindrance, Donnan exclusion and dielectric exclusion.
Increasing the cross-flow velocity resulted in higher permeate flux and salt rejections, which was due to enhanced shear rates, reducing the extent of concentration polarization. On the other hand, increasing the feed concentration lowered permeate flux and rejections, due to higher osmotic pressure difference on both sides of the membrane and accumulation of solutes on the membrane surface.
The mass transfer of solutes during filtration was governed by concentration polarization, which was more prominent at lower cross-flow velocities and higher feed concentrations. The value of the mass transfer coefficient increased with increasing cross-flow velocities, reducing the thickness of the polarization layer.
While fouling was negligible in all experiments conducted in this study, concentration polarization experienced by both membranes was speculated to be different. The higher flux of NF270 led to more solute accumulation on the membrane surface, which resulted in a higher concentration polarization modulus. The higher rejection of NSK98, coupled with its lower flux, enhanced solute back-diffusion, which resulted in a thicker, more resistant but less dense concentration polarization layer.

Table of Contents
摘要 I
Abstract III
Acknowledgments V
Table of Contents VI
List of Figures XI
List of Tables IX
Chapter 1 Introduction 1
1.1 Research background 1
1.2 Research objectives 3
Chapter 2 Literature Review 6
2.1 Membrane processes 6
2.1.1 Pressure-driven membrane filtration 6
2.1.2 Nanofiltration (NF) membrane 8
2.2 Separation mechanisms in nanofiltration 10
2.2.1 Steric Effects 11
2.2.2 Non-steric Effects 13
2.2.3 Factors affecting separation mechanisms in NF 18
2.3 Fouling in nanofiltration 20
2.3.1 Factors affecting fouling in NF 21
2.3.2 Effect of fouling on rejection 23
2.3.3 Assessment of fouling 24
2.3.4 Fouling control strategies 25
2.4 Concentration polarization (CP) 26
2.4.1 Description of CP 26
2.4.2 Concentration polarization control strategies 28
2.5 Modeling mass transport in NF 29
2.5.1 Film theory 30
2.5.2 Spiegler-Kedem model 37
2.5.3 Extended Nernst-Planck equation 40
2.5.4 Resistance-in-series model 43
Chapter 3 Materials and Methods 45
3.1 Chemicals and NF Membranes 45
3.1.1 Chemicals and reagents 45
3.1.2 Membrane properties 46
3.2 Experimental Setup 46
3.3 Experimental Protocol 50
3.3.1 Membrane pretreatment 50
3.3.2 Filtration experiments with salt solutions 51
3.4 Analytical Methods 55
3.4.1 Ion analysis 55
3.4.2 Membrane morphology 55
3.4.3 Contact angle measurements 55
3.5 Calculations 56
3.5.1 Film theory and mass transfer coefficient 56
3.5.2 Resistance-in-series model 59
Chapter 4 Results and Discussion 60
4.1 Membrane characterization 60
4.1.1 Morphology 60
4.1.2 Contact angle 63
4.2 Effect of salt solutions on membrane performance 64
4.2.1 Effect on permeate flux 64
4.2.2 Effect on rejection 67
4.3 Effect of cross-flow velocity on membrane performance 74
4.3.1 Effect on permeate flux 74
4.3.2 Effect on solute rejection 79
4.4 Effect of feed concentration on membrane performance 87
4.4.1 Effect on permeate flux 87
4.4.2 Effect on solute rejection 89
4.5 Effect of concentration polarization on membrane performance 93
4.5.1 Calculation of solute real rejection 93
4.5.2 Evaluation of membrane resistance to filtration 99
Chapter 5 Conclusions and Recommendations 106
5.1 Conclusions 106
5.2 Recommendations 108
References 109
Appendix 128

List of Tables
Table 2.1 Characteristics of different filtration methods 7
Table 2.2 Mass transport models in NF with inclusion of CP 30
Table 2.3 Sherwood number correlations 35

Table 3.1 Characteristics of feed salt solutions 45
Table 3.2 Properties of NF membranes 48

Table 4.1 Stabilized flux and flux reduction ratio of salt solutions 66
Table 4.2 Ionic and hydrated radii of ions 68
Table 4.3 Stabilized observed conductivity rejections and permeate conductivities of salt solutions 69
Table 4.4 Stabilized observed cation rejections and permeate conductivities of salt solutions 70
Table 4.5 Limiting molar ionic conductivities and mobilities of ions 73
Table 4.6 Stabilized flux and flux reduction ratio of Na2SO4 solution 75
Table 4.7 Stabilized flux and flux reduction ratio of MgSO4 solution 76
Table 4.8 Stabilized flux and flux reduction ratio of Al2(SO4)3 solution 77
Table 4.9 Stabilized observed conductivity rejections and permeate conductivities of Na2SO4 solution at three cross-flow velocities 80
Table 4.10 Stabilized observed conductivity rejections and permeate conductivities of MgSO4 solution at three cross-flow velocities 81
Table 4.11 Stabilized observed conductivity rejections and permeate conductivities of Al2(SO4)3 solution at three cross-flow velocities 82
Table 4.12 Stabilized observed sodium ion rejections and permeate concentrations at three cross-flow velocities 83
Table 4.13 Stabilized observed magnesium ion rejections and permeate concentrations at three cross-flow velocities 84
Table 4.14 Stabilized observed aluminum ion rejections and permeate concentrations at three cross-flow velocities 85
Table 4.15 Stabilized flux and flux reduction ratio of MgSO4 solution at three feed concentrations 88
Table 4.16 Stabilized observed conductivity rejections and permeate conductivities of MgSO4 solution at three feed concentrations 91
Table 4.17 Stabilized observed magnesium ion rejections and permeate concentrations at three feed concentrations 92
Table 4.18 Derivations of the mass transfer coefficients and boundary layer thickness of ions 94
Table 4.19 Summary of real and observed cation rejections and CP transport parameters for NF270 membrane 97
Table 4.20 Summary of real and observed cation rejections and CP transport parameters for NSK98 membrane 98
Table 4.21 Resistances to salt filtration 101
Table 4.22 Resistances to Na2SO4 filtration with variation of CFV 102
Table 4.23 Rresistances to MgSO4 filtration with variation of CFV 103
Table 4.24 Resistances to Al2(SO4)3 filtration with variation of CFV 104
Table 4.25 Resistances to MgSO4 filtration with variation of concentration 105

List of Figures
Figure 1.1 Research framework 5

Figure 2.1 The filtration spectrum 7
Figure 2.2 Schematic of membrane filtration process 8
Figure 2.3 Filtration modes 8
Figure 2.4 Schematic layers of a TFC membrane 10
Figure 2.5 Schematic diagram of membrane modules 10
Figure 2.6 Separation mechanisms in NF 11
Figure 2.7 Molecular sieving and solution-diffusion mechanism 12
Figure 2.8 Transport of solutes with hydration shells through a membrane 13
Figure 2.9 Donnan effect in a solution 16
Figure 2.10 Dielectric exclusion effect 17
Figure 2.11 Factors affecting fouling in NF 21
Figure 2.12 Membrane fouling mechanisms in the Hermia model 25
Figure 2.13 Concentration polarization (CP) and Cake-enhanced CP 26
Figure 2.14 Turbulent flow patterns around spacer nettings 28
Figure 2.15 Mass transfer of solutes in the CP layer 31
Figure 2.16 Resistances of NF membrane during filtration 44

Figure 3.1 Schematic representation of bench-scale NF setup 49
Figure 3.2 Picture of bench-scale NF setup 49
Figure 3.3 Picture of the cross-flow membrane filtration cell 50
Figure 3.4 Flow diagram of membrane pretreatment protocol 53
Figure 3.5 Flow diagram of experimental protocol for various CFVs and feed concentrations and salt solutions 54

Figure 4.1 Cross-sections of NF270 and NSK98 62
Figure 4.2 Membrane pores of NF270 and NSK98 62
Figure 4.3 Surface morphologies of NF270 and NSK98 62
Figure 4.4 EDS spectra of virgin NF270 and NSK98 63
Figure 4.5 Comparison of permeate flux of salt solutions to pure water flux 66
Figure 4.6 Observed conductivity rejections of salt solutions 69
Figure 4.7 Observed cation rejections of salt solutions 70
Figure 4.8 Effect of cross-flow velocity (CFV) on flux of Na2SO4 solution 75
Figure 4.9 Effect of CFV on flux of MgSO4 solution 76
Figure 4.10 Effect of CFV on flux of Al2(SO4)3 solution 77
Figure 4.11 Effect of CFV on observed conductivity rejection of Na2SO4 80
Figure 4.12 Effect of CFV on observed conductivity rejection of MgSO4 81
Figure 4.13 Effect of CFV on observed conductivity rejection of Al2(SO4)3 82
Figure 4.14 Effect of CFV on observed sodium ion rejection 83
Figure 4.15 Effect of CFV on observed magnesium ion rejection 84
Figure 4.16 Effect of CFVon observed aluminum ion rejection 85
Figure 4.17 Effect of feed concentration on flux of MgSO4 solution 88
Figure 4.18 Effect of feed concentration on observed conductivity rejection of MgSO4 solution 91
Figure 4.19 Effect of feed concentration on observed magnesium ion rejection 92
Figure 4.20 Effect of salt on filtration resistance of both membranes 101
Figure 4.21 Effect of CFV on resistance during filtration of Na2SO4 102
Figure 4.22 Effect of CFV on resistance during filtration of MgSO4 103
Figure 4.23 Effect of CFV on resistance during filtration of Al2(SO4)3 104
Figure 4.24 Effect of concentration on resistance during filtration of MgSO4 105

Figure A1 Static contact angle images of (a) NF270; (b) NSK98 128




1.Abdelrasoul, A., Doan, H., Lohi, A. and Cheng, C.H., “Mass Transfer Mechanisms and transport Resistances in Membrane Separation Process” in Solecki, M. (Ed.), Advancement in Process Modelling, Chapter: 2, Intech Open Access, pp.15-40 (2015).
2.Abid, H.S., Johnson, D.J., Hashaikeh, R. and Hilal, N., “A review of efforts to reduce membrane fouling by control of feed spacer characteristics”, Desalination, Vol. 420 pp.384-402 (2017).
3.Agboola, O., Maree, J., Kolesnikov, A., Mbaya, R. and Sadiku, R., “Theoretical performance of nanofiltration membranes for wastewater treatment”, Environmental Chemical Letters, Vol. 13, pp. 37-47 (2015).
4.Agenson, K.O. and Urase, T., “Changes in membrane performance due to organic fouling in nanofiltration (NF)/reverse osmosis (RO) applications”, Separation and Purification technology, Vol. 55, pp. 147-156 (2007).
5.Aguiar, A.O., Andrade, L.H., Ricci, B.C., Pires, W.L., Miranda, G.A. and Amaral, M.C.S., “Gold acid mine drainage treatment by membrane separation processes: An evaluation of the main operational conditions”, Separation and Purification Technology, 170 (2016) 360-369.
6.Ahmed, F.N., “Modified Spiegler-Kedem Model to Predict the Rejection and Flux of Nanofiltration Processes at High NaCl Concentrations”, Master Thesis, Department of Civil Engineering, University of Ottawa, Ottawa, Canada (2013).
7.Ang, W.L. and Mohammad, A.W., “Mathematical modeling of membrane operations for water treatment” in Basile, A., Cassano, A. and Rastogi, N.K. (Eds.), Advances in Membrane Technologies for Water Treatment, Elsevier, pp. 379-407 (2015).
8.Aktaş, Ö., Sahinkaya, E., Yurtsever, A., Demir, S., Yüceyurt, M., Çakmak, A., Külekci, Ç., Tahmaz, Ş. And Uludağ, M., “Treatment of a chemical industry effluent by nanofiltration and reverse osmosis”, Desalination and Water Treatment, Vol. 75, pp. 274-283 (2007).
9.Al-Amoudi, A. and Lovitt, R.W., “Fouling strategies and the cleaning systems of NF membranes and factors affecting cleaning efficiency”, Journal of Membrane Science, Vol. 303, pp. 4-28 (2007).
10.Al-Amoudi, A.S., “Factors affecting natural organic matter (NOM) and scaling fouling in NF membranes: A review”, Desalination, Vol. 259, pp. 1-10 (2010).
11.Andrade, L.H., Mendes, F.D.S., Espindola, J.C. and Amaral, M.C.S., “Nanofiltration as tertiary treatment for the reuse of dairy wastewater treated by membrane bioreactor”, Separation and Purification Technology, Vol. 126, pp. 21-29 (2014).
12.Andrade, L.H., Aguiar, A.O., Pires, W.L., Grossi, L.B. and Amaral, M.C.S., “Comprehensive bench- and pilot-scale investigation of NF for gold mining effluent treatment: Membrane performance and fouling control strategies”, Separation and Purification Technology, Vol. 174, pp. 44-56 (2017).
13.Antony, A., Low, J.H. Gray, A., Childress, A.E. Le-Clech, P. and Leslie, G., “Scale formation and control in high pressure membrane water treatment systems: A review”, Journal of Membrane Science, Vol. 383 pp. 1-16 (2011).
14.Artuğ, G., Roosmasari, I., Richau, K. and Hapke, J., “A Comprehensive characterization of commercial nanofiltration membranes”, Separation Science & Technology, Vol. 42, No. 13, pp. 2947-2986 (2007).
15.Atkins, P. and de Paula, J., Atkins Physical Chemistry 8th Edition, Oxford University Press, Oxford (2009).
16.Azaïs, A., Mendret, J., Gassara, S., Petit, E., Deratani, A. and Brosillon, S., “Nanofiltration for wastewater reuse: Counteractive effects of fouling and matrice on the rejection of pharmaceutical active compounds”, Separation and Purification Technology, Vol. 133, pp. 313-327 (2014).
17.Bacchin, P. and Aimar, P., “Critical fouling conditions induced by colloidal surface interaction: from causes to consequences”, Desalination, Vol. 175, pp. 21-27 (2005).
18.Bacchin, P., Si-Hassen, D., Starov, V., Clifton, M. and Aimar, P., “A unifying model for concentration polarization, gel-layer formation and particle deposition in cross-flow membrane filtration of colloidal suspensions”, Chemical Engineering Science, Vol. 57, No. 1, pp.77-91 (2002).
19.Badessa, T.S. and Shaposhnik, V.A., “The dependence of electrical conductivity of ion-exchange membranes on the charge of counter ions”, Condensed Matter and Interphases, Vol., 16, No. 2, pp. 129-133 (2014).
20.Baker, R.W., Membrane Technology and Applications, John Wiley & Sons (2012).
21.Bandini, S. “Modelling the mechanism of charge formation in NF membranes: Theory and application”, Journal of Membrane Science, Vol. 264, No. 1-2, pp. 75-86 (2005).
22.Bandini, S. and Vezzani, D., “Nanofiltration modeling: the role of dielectric exclusion in membrane characterization”, Chemical Engineering Science, Vol. 58, pp. 3303-3326 (2003).
23.Bellona, C., Marts, M. and Drewes, J.E., “The effect of organic membrane fouling on the properties and rejection characteristics of nanofiltration membranes”, Separation and Purification Technology, Vol. 74, pp. 44-54 (2010).
24.Bhattacharjee, S., “Concentration Polarization: Early Theories”, Water Planet Inc. (2017).
25.Bhattacharya, S. and Hwang, S.T., “Concentration polarization, separation factor, and Peclet number in membrane processes”, Journal of Membrane Science, Vol. 132, pp. 73-90 (1997).
26.Bian, R., Yamamoto, K. and Watanabe, Y., “The effect of shear rate on controlling the concentration polarization and membrane fouling”, Desalination, Vol. 131, pp. 225-236 (2000).
27.Bouranene, S., Fievet, P., Szymczyk, A., Samar, M.E.H. and Vidonne, A., “Influence of operating conditions on the rejection of cobalt and lead ions in aqueous solutions by a nanofiltration polayamide membrane”, Journal of Membrane Science, Vol. 325, pp. 150-157 (2008).
28.Boussauga, Y.A. and Lhassani, A., “Study of mass transfer mechanisms of reverse osmosis and nanofiltration membranes intended for desalination”, Journal of Materials and Environmental Sciences, Vol. 8, No. 3, pp. 1128-1138 (2017).
29.Boussu, K., Zhang, Y., Cocquyt, J., Van der Meeren, P., Volodin, A., Van Haesendonck, C., Martens, J.A. and Van der Bruggen, B., “Characterization of polymeric nanofiltration membranes for systematic analysis of membrane performance”, Journal of Membrane Science, Vol. 278, pp. 418-427 (2006).
30.Boussu, K., Belpaire, A., Volodin, A., Van Haesendonck, C., Van der Meeren, P., Vandecastelle, C. and Van der Bruggen, B., “Influence of membrane and colliod characteristics on fouling of nanofiltration membranes”, Journal of Membrane Science, Vol. 289, pp. 220-230 (2007).
31.Boussu, K., “Influence of Membrane Characteristics on Flux Decline and Retention in Nanofiltration”, Doctorate Thesis, Department of Chemical Engineering, Katholieke Universiteit Leuven, Belgium (2007).
32.Boussu, K., Vandecasteele, C. and Van der Bruggen, B., “Relation between membrane characteristics and performance in nanofiltration”, Journal of Membrane Science, Vol. 310, pp. 51-65 (2008).
33.Bowen, W.R. and Mukhtar, H., “Characterisation and prediction of separation performance of nanofiltration membranes”, Journal of Membrane Science, Vol. 112, pp. 263-274 (1996).
34.Bowen, W.R., Valvo, J.I. and Hernández, A., “Steps of membrane blocking in flux decline during protein microfiltration”, Journal of Membrane Science, Vol. 101, pp. 153-165 (1995).
35.Brião, V.B. and Tavares, C.R.G., “Pore Blocking Mechanism for the Recovery of Milk Solids from Dairy Wastewater by Ultrafiltration”, Brazilian Journal of Chemical Engineering, Vol. 29, No. 2, pp. 393-407 (2012).
36.Cavaco Morão, A.I., Alves, A.M.B. and Geraldes, V., “Concentration polarization in a reverse osmosis/nanofiltration plate-and-frame membrane module”, Journal of Membrane Science, Vol. 325, pp. 580-591 (2008).
37.Chang, E.-E. Chen, Y.W., Lin, Y.L. and Chiang, P.C., “Reduction of natural organic matter by nanofiltration process”, Chemosphere, Vol. 76, pp. 1265-1272 (2009).
38. Chang, E.-E. Yang, S.Y., Huang, C.P., Liang, C.H. and Chiang, P.C., “Assessing the fouling mechanisms of high-pressure nanofiltration membrane using the modified Hermia model and the resistance-in-series model”, Separation and Purification Technology, Vol. 79, pp. 329-336 (2011).
39.Cheng, X.Q., Liu, Y., Guo, Z. and Shao, L., “Nanofiltration membrane achieving dual resistance to fouling and chlorine for “green” separation of antibiotics”, Journal of Membrane Science, Vol. 493 pp. 156-166 (2015).
40.Childress, A.E. and Elimelech, M., “Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes”, Journal of Membrane Science, Vol. 119, pp. 253-268 (1996).
41.Childress, A.E. and Elimelech, M., “Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics”, Environmental Science & Technology, Vol. 34, pp. 3710-3716 (2000).
42.Contreras, A.E., Kim, A. and Li, Q., “Combined fouling of nanofiltration membranes: Mechanisms and effect of organic matter”, Journal of Membrane Science, Vol. 327, pp. 87-95 (2009).
43.Dang, H.Q., Price, W.E. and Nghiem, L.D., The effects of feed solution temperature on pore size and trace organic contaminant rejection by the nanofiltration membrane NF270, Separation and Purification Technology, Vol. 125 pp. 43-51 (2014).
44.Dasgupta, J. Mondal, D., Chakraborty, S., Sikder, J., Curcio, S. and Arafat, H.A., “Nanofiltration based water reclamation from tannery effluent following coagulation pretreatment”, Ecotoxicology and Environmental Safety, Vol.121, pp. 22-30 (2015).
45.Dechadilok, P. and Deen, W.M., “Hindrance Factors for Diffusion and Convection in Pores”, Industrial Engineering & Chemical Research, Vol. 45, pp. 6953-6959 (2006).
46.Déon, S., Dutournié, P., Fievet, P., Limousy, L. and Bourseau, P., “Concentration polarization phenomenon during the nanofiltration of multi-ionic solutions: Influence of the filtrated solution and operating conditions”, Water Research, Vol. 47, pp. 2260-2272 (2013).
47.Draževic, E., Košutić, K. and Dananić, V., “Mass transfer of differently sized organic solutes at spacer covered and permeable nanofiltration wall”, Chemical Engineering Journal, No. 244 pp. 152-159 (2014).
48.Fernández-Sempere, J., Ruiz-Beviá, F., García-Algado, P. and Salcedo-Díaz, R., “Experimental study of concentration polarization in a crossflow reverse osmosis system using Digital Holographic Interferometry”, Desalination, Vol. 257, pp. 36-45 (2010).
49.Field, R., “Fundamentals of Fouling” in Peinemann, K.V. and Nunes S.P. (Eds.), Membrane Technology: Volume 4: Membranes for Water Treatment, John Wiley & Sons pp. 1-23 (2010).
50.Field, R.W., Wu, D., Howell, J.A. and Gupta, B.B. “Critical flux concept for microfiltration fouling”, Journal of Membrane Science, Vol. 100, pp. 259-272 (1995).
51.Geise, G.M., Paul, D.R. and Freeman, B.D., “Fundamental water and salt transport properties of polymeric materials”, Progress in Polymer Science, Vol. 39 pp. 1-42 (2014).
52.Geraldes, V. and Afonso, M.D., “Prediction of the concentration polarization in the nanofiltration/reverse osmosis of dilute multi-ionic solutions”, Journal of Membrane Science, Vol. 300, pp. 20-27 (2007).
53.Geraldes, V. and Alves, A.M.B., “Computer program for simulation of mass transport in nanofiltration membranes”, Journal of Membrane Science, Vol. 321, pp. 172-182 (2008).
54.Gherasim C.V. and Mikulašek, P., “Influence of operating variables on the removal of heavy metal ions from aqueous solutions by nanofiltration”, Desalination, Vol. 343, pp. 67-74 (2014).
55.Giwa A. and Ogunribido, A., “The Applications of Membrane Operations in the Textile Industry – A Review”, British Journal of Applied Science & Technology, Vol. 2, No. 3, pp. 296-310 (2012).
56.Gomes, A., Gonçalves, I.C. and de Pinho, M.N., “The role of adsorption on nanofiltration of azo dyes”, Journal of Membrane Science, Vol. 255, pp. 157-165 (2005).
57.González Mañas, J.M., Online Course on Biomolecules, University of Basque Country, Spain (2007) http://www.ehu.eus/biomoleculas/proteinas/
58.Gryta, M., Bastrzyk, J. and Lech, D., “Evaluation of fouling potential of nanofiltration membranes based on the dynamic contact angle measurements”, Polish Journal of Chemical Engineering, Vol. 14, No. 3, pp. 97-104 (2012).
59.Gu, B., Adjiman, C.S. and Xu, X.Y., “The effect of feed spacer geometry on membrane performance and concentration polarisation based on 3D CFD simulations”, Journal of Membrane Science, Vol. 527 pp. 78-91 (2017).
60.Guo, W., Ngo, H.H. and Li, J., “A mini-review on membrane fouling”, Bioresource Technology, Vol. 122, pp. 27-34 (2012).
61.Jepsen, J.K., Mai, C.L. and Yang, Z., “Challenges of Membrane Filtration for Produced Water Treatment in Offshore Oil & Gas Production”, OCEANS, MTS/IEEE Monterey. Institute of Electrical and Electronics Engineers (2016).
62.Hidalgo, A.M., León, G., Gómez, M. Murcia, M.D. Gómez, E. and Gómez, J.L., “Application of the Spiegler–Kedem–Kachalsky model to the removal of 4-chlorophenol by different nanofiltration membranes”, Desalination, Vol. 315 pp. 70-75 (2013).
63.Hilal, N., Al-Zoubi, H., Darwish, N.A. and Mohammad, A.W. “Performance of Nanofiltration Membranes in the Treatment of Synthetic and Real Seawater”, Separation Science and Technology, Vol. 42, No. 3, pp. 493-515 (2006).
64.Hilal, N., Al-Abri, M., Al-Hinai, H. and Abu-Arabi, M., “Characterization and retention of NF membranes using PEG, HS and polyelectrolytes”, Desalination, Vol. 221, pp. 284-293 (2008).
65.Hoek, E.M.V. and Elimelech, M., “Cake-Enhanced Concentration Polarization: A New Fouling Mechanism for Salt-Rejecting Membranes”, Environmental Science & Technology, Vol. 37, pp.5581-5588 (2003).
66.Hong, S. and Elimelech, M., “Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes”, Journal of Membrane Science, Vol. 132, pp. 159-181 (1997).
67.Hu, L., Zhang, S., Han, R. and Jian, X., “Preparation and performance of novel thermally stable polyamide/PPENK composite nanofiltration membranes”, Applied Surface Science, 258 (2012) 9047-9053.
68.Hussain, A.A., Abashar, M.E.E. and Al-Mutaz, I.S., “Effect of Ion Sizes on Separation Characteristics of Nanofiltration Membrane Systems”, Journal of King Saud University, Vol. 19, No. 1, pp. 1-19 (2006).
69.Hussain, A.A., Nataraj, S.K., Abasha, M.E.E., Al-Mutaz, I.S. and Aminabhavi, T.M., “Prediction of physical properties of nanofiltration membranes using experiment and theoretical models”, Journal of Membrane Science, Vol. 310, pp. 321-336 (2008).
70.Ivnitsky, H., Katz, I., Minz, D., Volvovic, G., Shimoni, E., Kesselman, E., Semiat, R. and Dosoretz, C.G., “Bacterial community composition and structure of biofilms developing on nanofiltration membranes applied to wastewater treatment”, Water Research, Vol. 41, pp. 3924-3935 (2007).
71.Jarusutthirak, C., Mattaraj, S. and Jiraratananon, R., “Factors affecting nanofiltration performances in natural organic matter rejection and flux decline”, Separation and Purification Technology, Vol. 58, pp. 68-75 (2007).
72.Jiraratananon, R., Sungpet, A. and Luangsowan, P., “Performance evaluation of nanofiltration membranes for treatment of effluents containing reactive dye and salt”, Desalination, Vol.30, pp. 177-183 (2000).
73.Kaya, Y., Barlas, H. and Arayici, S., “Evaluation of fouling mechanisms in the nanofiltration of solutions with high anionic and nonionic surfactant contents using a resistance-in-series model”, Journal of Membrane Science, Vol. 367, pp. 45-54 (2010).
74.Kilduff, J. E., Mattaraj, S. and Belfort, G., “Flux decline during nanofiltration of naturally-occurring dissolved organic matter: effects of osmotic pressure, membrane permeability and cake formation”, Journal of Membrane Science, Vol. 239, pp. 39053 (2004).
75.Kimura, K., Amy, G., Drewes, J. and Watanabe, Y., “Adsoprtion of hydrophobic compounds onto NF/RO membranes: an artifact leading to overestimation of rejection”, Journal of Membrane Science, Vol. 221, pp. 89-101 (2003).
76.Koo, C.H., Mohammad, A.W. and Suja, F., “Effect of cross-flow velocity on membrane filtration performance in relation to membrane properties”, Desalination and Water Treatment, Vol. 55, No. 3, pp. 678-692 (2015).
77.Koseoglu, H., Kabay, N., Yüksel, M., Sarp, S., Arar, O. and Kitis, M., “Boron removal from seawater using high rejection SWRO membranes- impact of pH, feed concentration, pressure and cross-flow velocity”, Desalination, Vol. 227, pp. 253-263 (2008).
78.Košutić, K. and Kunst, B., “Removal of organics from aqueous solutions by commercial RO and ND membranes of characterized porosities”, Desalination, Vol. 142, pp. 47-56 (2002).
79.Košutić, K., Kaštelan-Kunst, L. and Kunst, B., “Porosity of some commercial reverse osmosis and nanofiltration polyamide thin-film composite membranes”, Journal of Membrane Science, Vol. 168, pp.101-108 (2000).
80.Koter, S., “Determination of the parameters of the Spiegler-Kedem-Katchalsky model for nanofiltration of single electrolyte solutions”, Desalination, Vol. 198, pp. 335-345 (2007).
81.Kotrappanavar, N.S., Hussain, A.A., Abasha, M.E.E., Al-Mutaz, I.S., Aminabhavi, T.M. and Nadagouda, M.N., “Prediction of physical properties of nanofiltration membranes for neutral and charged solutes”, Desalination, Vol. 280 pp.174-182 (2011).
82.Koyuncu, I., “Reactive dye removal in dye/salt mixtures by nanofiltration membranes containing vinylsulphone dyes: Effects of feed concentration and cross flow velocity”, Desalination, Vol. 143, pp. 243-253 (2002).
83.Koyuncu I., and Cakmakci, M., “Nanofiltration for water and wastewater treatment” in Cleote, T.E., De Kwaadsteniet, M. and Botes, M., (Ed.), Nanotechnology in Water Treatment Applications, Horizon Scientific Press, pp. 103-132 (2010).
84.Koyuncu, I. and Topacik, D., “Effect of organic ion on the separation of salts by nanofiltration membranes”, Journal of Membrane Science, Vol. 195, pp. 247-263 (2002).
85.Koyuncu, I., Topacik, D. and Wiesner, M. R., “Factors influencing flux decline during naofiltration of solutions containing dyes and salts”, Water Research, Vol. 38, pp. 432-440 (2004).
86.Krieg, H.M., Modise, S.J., Keizer, K. and Neomagus, H.W.J.P., “Salt rejection in nanofiltration for single and binary mixtures in view of sulphate removal”, Desalination, No. 171, pp. 205-215 (2004).
87.Labban, O., Liu, C., Chong, T.H. and Lienhard V, J.H., “Fundamentals of low-pressure nanofiltration: Membrane characterization, modeling, and understanding the multi-ionic interactions in water softening”, Journal of Membrane Science, Vol. 521, pp. 18-32 (2017).
88.Labbez, C., Fievet, P., Szymczyk, P., Vidonne, A., Foissy, A. and Pagetti, J., “Retention of mineral salts by a polyamide nanofiltration membrane”, Separation and Purification Technology, Vol. 30, pp. 47-55 (2003).
89.Lan, Y., Groenen-Serrano, K., Coetsier, C. and Causserand, C., “Fouling control using critical, threshold and limiting fluxes concepts for cross-flow NF of a complex matrix: Membrane BioReactor effluent” Journal of Membrane Science, Vol. 524, pp. 288-298 (2016).
90.Lanteri, Y., Fievet, P, and Szymczyk, A. “Evaluation of the steric, electric and dielectric exclusion model o the basis of salt rejection rate and membrane potential measurements”, Journal of Colloid and Interface Science, Vol. 331, pp. 148-155 (2009).
91.Lee, S. and Lee, C.H., “Microfiltration and Ultrafiltration as a pretreatment for nanofiltration of surface water”, Separation Science and Technology, Vol. 41, No. 1, pp. 1-23 (2006).
92.Li, Q. and Elimelech, M., “Organic Fouling and Chemical Cleaning of Nanofiltration Membranes: Measurements and Mechanisms”, Environmental Science & Technology, Vol. 38, pp. 4683-4693 (2004).
93.Li, Q. and Elimelech, M., “Synergistic effects in combined fouling of a loose nanofiltration membrane by colloidal materials and natural organic matter”, Journal of Membrane Science, Vol. 278, pp. 72-82 (2006).
94.Li, P., Wang, Z., Qiao, Z., Liu, Y., Cao, X., Li, W., Wang, J. and Wang, S., “Recent developments in membranes for efficient hydrogen purification”, Journal of Membrane Science, Vol. 495, pp. 130-168 (2015).
95.Li; K., Wang, J.; Liu, J. Wei; Y. and Chen, M., “Advanced treatment of municipal wastewater by nanofiltration: Operational optimization and membrane fouling analysis”, Journal of Environmental Science, Vol. 43, pp. 106-117 (2016).
96.Lin, Y.L., Chiang, P.C. and Chang, E.-E., “Removal of small trihalomethane precursors from aqueous solution by nanofiltration”, Journal of Hazardous Materials, Vol. 146, pp. 20-29 (2007).
97.Liu, M., Lü, Z., Chen, Z., Yu, S. and Gao, C., “Comparison of reverse osmosis and nanofiltration membranes in the treatment of biologically treated textile effluent for water reuse”, Desalination, Vol. 281 pp. 372-378 (2011).
98.Luo, J. and Wan, Y., “Effects of pH and salt on nanofiltration—a critical review”, Journal of Membrane Science, Vol. 438, pp. 18-28 (2013).
99.Liu, Y.L., Wang, X.M., Yang, H.W. and Xie, Y.F., “Quantifying the influence of solute-membrane interactions on adsorption and rejection of pharmaceuticals by NF/RO membranes”, Journal of Membrane Science, Vol. 551 pp. 37-46 (2018).
100.Luo, J. and Ding, L.H., “Influence of pH on treatment of dairy wastewater by nanofiltration using shear-enhanced filtration system”, Desalination, Vol. 278, pp. 150-156 (2011).
101.Luo, J. and Wan, Y., “Effect of highly concentrated salt on retention of organic solutes by nanofiltration polymeric membranes”, Journal of Membrane Science, Vol. 372 pp. 145-153 (2011).
102.Luo, J., Ding, L., Su, Y., Wei, S. and Wan, Y. “Concentration polarization in concentrated saline solution during desalination of iron dextran by nanofiltration”, Journal of Membrane Science, Vol. 363, pp. 170-179 (2010).
103.Luo, J., Ding, L., Wan, Y. and Jaffrin, M.Y., “Flux decline control in nanofiltration of detergent wastewater by a shear-enhanced filtration system”, Chemical Engineering Journal, Vol. 181-182, pp. 397-406 (2012).
104.Oatley, D.L., Llenas, L, Pérez, R., Williams, P.M., Martínez-Lladó, X. and Rovira, M., “Review of the dielectric properties of nanofiltration membranes and verification of the single oriented layer approximation”, Advances in Colloidal and Interface Science, Vol. 173, pp. 1-11 (2012).
105.Mikulašek, P. and Velikovská, “The Influence of electrochemical properties of membranes and dispersions on microfiltration” in Ning, R.Y. (Ed.), Expanding Issues in Desalination, pp. 181-196 (2011).
106.Mänttäri, M., Pihlajamäki, A. and Nyström, M., “Effect of pH on hydrophilicity and charge and their effect on the filtration efficiency of NF membranes at different pH”, Journal of Membrane Science, Vol. 280, pp. 311-320 (2006).
107.Marcus, Y., “Thermodynamics of Solvation of Ions”, Journal of the Chemical Society Faraday Transactions, Vol. 87, No. 18, pp. 2995-2999 (1991).
108. Mattaraj, S., Phimpha, W., Hongthong, P. and Jiraratananon, R., “Effect of operating conditions and solution chemistry on model parameters in crossflow reverse osmosis of natural organic matter”, Desalination, Vol. 253, pp. 38-45 (2010).
109.Meschke, K., Hansen, N., Hofmann, R., Haseneder, R. and Repke, J.U., “Characterization and performance evaluation of polymeric nanofiltration membranes for the separation of strategic elements from aqueous solutions”, Journal of Membrane Science, Vol. 546, pp. 246-257 (2017).
110.Miller, D.J., Kasemset, S., Paul, D.R. and Freeman, B.D., “Comparison of membrane fouling at constant flux and constant transmembrane pressure conditions”, Journal of Membrane Science, Vol. 454, pp. 505-515 (2014).
111.Mohammad, A.W., Hilal, N., Al-Zoubi H. and Darwish, N.A., “Prediction of permeate fluxes and rejections of highly concentrated salts in nanofiltration membranes”, Journal of Membrane Science, Vol. 289, pp. 40-50 (2007).
112.Mohammad, A.W., Teow, Y.H., Ang, W.L., Chung, Y.T. Oatley-Radcliffe, D.L. and Hilal, N., “Nanofiltration membranes review: Recent advances and future prospects”, Desalination, Vol. 356 pp. 226-254 (2014).
113.Mouhoumed, E.I., Szymczyk, A., Schäfer, A., Paugam, L. and La, Y.H., “Physico-chemical characterization of polyamide NF/RO membranes: Insight from streaming current measurements”, Journal of Membrane Science, Vol. 461, pp. 130-138 (2014).
114.Murthy, Z.V.P. and Chaudhari, L.B., “Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters”, Journal of Hazardous Materials, Vol. 160, pp. 70-77 (2008).
115.Murthy Z.V.P. and Chaudhari, L.B., “Separation of binary heavy metals from aqueous solutions by nanofiltration and characterization of the membrane using Spiegler-Kedem model”, Chemical Engineering Journal, Vol. 150, pp. 181-187 (2009).
116.Murthy, Z.V.P. and Gupta, S.K., “Estimation of mass transfer coefficient using a combined nonlinear membrane transport and film theory model”, Desalination, Vol. 199, pp. 39-49 (1997).
117.Muthukrishnan, M. and Guha, B.K., “Effect of pH on rejection of hexavalent chromium by nanofiltration”, Desalination, Vol. 219, pp. 171-178 (2008).
118.Nagy, E., Basic Equations of the Mass Transport through a Membrane Layer, Elsevier, pp. 249-266 (2012).
119.Nataraj, S., Schomäcker, R., Kraume, M., Mishra, I.M. and Drews, A., “Analyses of polysaccharide fouling mechanisms during crossflow membrane filtration”, Journal of Membrane Science, Vol. 308, pp. 152-161 (2008).
120.Nghiem, L.D. and Hawkes, S., “Effects of membrane fouling on the nanofiltration of pharmaceutically active compounds (PhACs): Mechanisms and role of membrane pore size”, Separation and Purification Technology, Vol. 57, pp. 176-184 (2007).
121.Nghiem, L.D. and Hawkes, S., “Effects of membrane fouling on the nanofiltration of trace organic contaminants”, Desalination, Vol. 236, pp. 273-281 (2009).
122.Nghiem, L.D., Schäfer, A.I. and Elimelech, M., “Removal of Natural Hormones by Nanofiltration Membranes: Measurement, Modeling, and Mechanisms”, Environmental Science & Technology, Vol. 38, pp. 1888-1896 (2004).
123.Nghiem, L.D., Schäfer, A.I. and Elimelech, M., “Pharmaceutical Retention Mechanisms by Nanofiltration Membranes”, Environmental Science & Technology, Vol. 39, pp. 7698-7705 (2005).
124.Nghiem, L. D., Coleman, P.J. and Espendiller, C., “Mechanisms underlying the effects of membrane fouling on the nanofiltration of trace organic contaminants”, Desalination, Vol. 250, No. 2, pp. 682-687 (2010).
125.Nicolini, J.V., Borges, C.P. and Ferraz, H.C., “Selective rejection of ions and correlation with surface properties of nanofiltration membranes”, Separation and Purification Technology, Vol. 171 pp. 238-247 (2016).
126.Nilsson, M., Trägårdh, G. and Östergren, K., “The influence of pH, salt an temperature on nanofiltration performance”, Journal of Membrane Science, Vol. 312, pp. 97-106 (2008).
127.Oatley-Radcliffe, D.L., Walters, M., Ainscough, T.J., Williams, P.M., Mohammad, A.W. and Hilal, N., “Nanofiltration membranes and processes: A review of research trends over the past decade” Journal of Water Process Engineering, No. 19, pp. 164-171 (2017).
128.Otero-Fernández, A., Otero, J.A., Maroto, A., Carmona, J., Palacio, L. Prádanos, P. and Hernández, A., “Concentration-polarization in nanofiltration of low concentration Cr(VI) aqueous solutions. Effect of operative conditions on retention”, Journal of Cleaner Production, Vol. 150 pp. 243-252 (2017).
129.Peeters, J.M.M., Boom, J.P., Mulder, M.H.V. and Strathmann, “Retention measurements of nanofiltration membranes with electrolyte solutions”, Journal of Membrane Science, Vol. 145, pp.199-209 (1998).
130.Peeva, L.G., Gibbins, E., Luthra, S.S., White, L.S., Stateva, R.P. and Livingston, A.G., “Effect of concentration polarization and osmotic pressure on flux in organic solvent nanofiltration”, Journal of Membrane Science, Vol.236, pp. 121-136 (2004).
131.Pérez-González, A., Ibáñez, R., Gómez, P., Urtiaga, A.M., I. Ortiz, I. and Irabien, J.A., “Nanofiltration separation of polyvalent and monovalent anions in desalination brines”, Journal of Membrane Science, Vol. 473, pp. 16-27 (2015).
132.Pontalier, P.Y., Ismail, A. and Ghoul, M., “Mechanisms for the selective rejection of solutes in nanofiltration membranes”, Separation and Purification Technology, Vol. 12, pp. 175-181 (1997).
133.Rangel-Porras, G., Rangel-Riviera, P. and Ramos-Ramírez, “Changes in the thermal behavior and surface area of transitional alumina induced by the inclusion of metallic ions”, Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, Vol. 45, No. 5, pp. 629-638 (2015).
134.Redondo, J., Busch, M. and De White, J.P., “Boron removal from seawater using Filmtec high rejection SWRO membranes”, Desalination, Vol. 156, pp. 229-238 (2003).
135.Rezaei, H., Ashiani, F.Z., and Fouladitajar, A., “Fouling Behavior and performance of microfiltration membranes for whey treatment in steady and unsteady-state conditions”, Brazilian Journal of Chemical Engineering, Vol. 31, No. 2, pp. 503-518 (2014).
136.Roy, Y., Warsinger, D.M. and Lienhard V, J.H., “Effect of temperature on ion transport in nanofiltration membranes: Diffusion, convection and electromigration”, Desalination, Vol. 420, pp. 241-257 (2017).
137.Rubin, A.J. and Hayden, P.L., Systematic Investigation of the hydrolysis and precipitation of Aluminum (III), in Rubin A.J. (Ed.), Aqueous Environment Chemistry of Metals, Ann Arbor Science, Michigan (1976).
138.Sari, M.A. and Chellam, S., “Relative contributions of organic and inorganic fouling during nanofiltration of inland brackish surface water”, Journal of Membrane Science, Vol. 523, pp. 68-76 (2016).
139.Schaep, J., Vandecasteele, C., Mohammad, A.W. and Bowen, W.R., “Analysis of the salt retention of nanofiltration membranes using the Donnan-Steric partitioning pore model”, Separation Science and Technology, Vol. 34, No. 15, pp. 3009-3030 (1999).
140.Schaep, J., Vandecasteele, C., Mohammad, A.W. and Bowen, W.R., “Modelling the retention of ionic components for different nanofiltration membranes”, Separation and Purification Technology, Vol.22-23, pp. 169-179 (2001).
141.Schäfer, A., Andritsos, N., Karabelas, A.J., Hoek, E.M.V., Schneider, R. and Nyström, M, “Fouling in Nanofiltration” in Schäfer, A, Waite, T.D. and Fane, A.G. (Eds.), Nanofiltration – Principles and Applications, Elsevier, pp. 169-239 (2004).
142.Schwinge, J., Neal., P.R., Wiley, D.E., Fletcher, D.F. and Fane, A.G., “Spiral wound modules and spacers Review and analysis”, Journal of Membrane Science, Vol. 242, pp. 129-153 (2004).
143.Seidel, A.,Waypa, J.J. and Elimelech, M., “Role of Charge (Donnan) exclusion in removal of arsenic from water by a negatively charged porous nanofiltration membrane”, Environmental Engineering Science, Vol. 18, No. 2, pp. 105-113 (2001).
144.Seidel., A. and Elimelech, M., “Coupling between chemical and physical interactions in natural organic matter (NOM) fouling of nanofiltration membranes: implications for fouling control”, Journal of Membrane Science, Vol. 203, pp. 245-255 (2002).
145.Sharma, R.R., Agrawal, R. and Chellam, S., “Temperature effects on sieving characteristics of thin-film composite nanofiltration membranes: pore size distributions and transport parameters”, Journal of Membrane Science, Vol. 223, pp. 69-87 (2003).
146.Shirazi, S., Lin, C.J. and Chen, D., “Inorganic fouling of pressure-driven membrane processes — A critical review”, Desalination, Vol. 250, pp. 236-248 (2010).
147.Shon, H.K., Phuntsho, S., Chaudhary, D.S., Vigneswaran, S. and Cho, J., “Nanofiltration for water and wastewater treatment – a mini review”, Drinking Water Engineering and Science, Vol. 6, pp. 47-53 (2013).
148.Silva, V, Geraldes, V., Alves, A.M.B., Palacio, L., Prádanos, P. and Hernández, A., “Multi-ionic nanofiltration of highly concentrated salt mixtures in the seawater range”, Desalination, Vol. 277 pp. 29-39 (2011).
149.Simon, A., Price, W.E. and Nghiem, L.D., “Changes in surface properties and separation efficiency of a nanofiltration membrane after repeated fouling and chemical cleaning cycles”, Separation and Purification Technology, Vol. 113, pp. 42-50 (2013).
150.Sivertsen, E., “Membrane Separation of anions in concentrated electrolytes”, Doctorate Thesis, Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway (2001).
151.Song, L. and Elimelech, M., “Theory of Concentration Polarization in Crossflow Filtration”, Journal of the Chemical Society Faraday Transactions, Vol. 91, No. 19, pp. 3389-3398 (1995).
152.Song, W., Ravindran, V., Koel, B.E. and Pirbazari, “Nanofiltration of natural organic matter with H2O2/UV pretreatment: fouling mitigation and membrane surface characterization”, Journal of Membrane Science, Vol. 241, pp. 143-160 (2004).
153.Su, W, Chen, C., Zhu, Y., Yang, W. and Dai, H., “Fouling Characteristics of Dissolved Organic Matter in Papermaking Process Water on Polyethersulfone Ultrafiltration Membranes”, Bioresources, Vol. 10, No. 3, pp. 5906-5919 (2015).
154.Szymczyk, A. and Fievet, P., “Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model”, Journal of Membrane Science, Vol. 252, pp. 77-88 (2005).
155.Tang, C.Y., Chong, T.H. and Fane, A.G., “Colloidal interactions and fouling of NF and RO membranes: A review”, Advances in Colloid and Interface Science, Vol. 164, pp. 125-143 (2011).
156.Tang, C.Y., Fu, Q.S., Criddle, C.S. and Leckie, J.O., “Effect of Flux (Transmembrane Pressure) and Membrane Properties on Fouling and Rejection of Reverse Osmosis and Nanofiltration Membranes Treating Perfluorooctane Sulfonate Containing Wastewater”, Environmental Science & Technology, Vol. 41, pp. 2008-2014 (2007a).
157.Tang, C.Y., Kwon, Y.N. and Leckie, J.O., “Fouling of reverse osmosis and nanofiltration membranes by humic acid – Effects of solution composition and hydrodynamic conditions”, Journal of Membrane Science, Vol. 290, pp. 86-94 (2007b).
158.Tang, C.Y., Kwon Y.N. and Leckie, J.O., “Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: II. Membrane physiochemical properties and their dependence on polyamide and coating layers”, Desalination, Vol. 242, pp. 168-182 (2009).
159.Tanninen J., Mänttäri, M. and Nyström, M., “Effect of salt mixture concentration on fractionation with NF membranes”, Journal of Membrane Science, Vol. 283, pp. 57-64 (2006).
160.Tansel, B., Sager, J., Garland, J. and Xu, S., “Effect of transmembrane pressure o overall resistance during cross-flow filtration of solutions with high-ionic content”, Journal of Membrane Science, Vol. 328, pp. 205-210 (2009).
161.Tansel, B., Sager, J., Rector, T., Garland, J., Strayer, R.F., Levine, L., Roberts, M., Hummerick, M. and Bauer, J. “Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration In dead end and cross flow modes”, Separation and Purification Technology, Vol. 51, pp. 40-47 (2006).
162.Teixiera, M.R., Rosa, M.J. and Nyström, “The role of membrane charge on nanofiltration performance”, Journal of Membrane Science, Bol. 265, pp. 160-166 (2005).
163.Tin, M.M.M., Anioke, G., Nakagoe, O., Tanabe, S., Kodamatani, H., Nghiem, L.D. and Fujioka, T., “Membrane fouling, chemical cleaning and separation performance assessment of a chlorine-resistant nanofiltration membrane for water recycling applications”, Separation and Purification Technology, Vol.189, pp. 170-175 (2017).
164.Tsuru, T., Nakao, S.I. and Kimura, S., “Calculation of ion rejection by extended Nernst-Planck equation with charged reverse osmosis membranes for single and mixed electrolyte solutions”, Journal of Chemical Engineering of Japan, Vol. 24, No. 4, pp. 511-517 (1991).
165.Tu, S.C., Ravindran, V. and Pirbazari, M., “A pore diffusion transport model for forecasting the performance of membrane processes”, Journal of Membrane Science, Vol. 265, pp. 29-50 (2005).
166.Tu, K.L., Nghiem, L.D. and Chivas, A.R., “Coupling effects of feed solution pH and ionic strength on the rejection of boron by NF/RO membranes”, Chemical Engineering Journal, Vol. 168, pp. 700-706 (2011).
167.Tu, N.P., “Role of charge effects during membrane filtration”, Master Thesis, Faculty of Bioscience Engineering, Ghent University, Belgium (2013).
168.Vaidya, S.Y., Simaria, A.V. and Murthy, Z.V.P., “Reverse osmosis transport models evaluation: A new approach”, Indian Journal of Chemical Technology, Vol. 8, pp. 335-343 (2001).
169.Van der Bruggen, B., Koninckx, A. and Vandecasteele, C., “Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration”, Water Research, Vol. 38, pp. 1347-1353 (2004).
170.Van der Bruggen, B., Mänttari, M. and Nyström, M., “Drawbacks of applying nanofiltration and how to avoid them: A review”, Separation and Purification Technology, Vol. 63, pp. 251-263 (2008).
171.Verliefde, A.R.D., Cornelissen, E.R., Heijman, S.G.J., Vererk, J.Q.J.C., Amy, G.L., Van der Bruggen, B. and Van Dijk, J.C., “The role of electrostatic interactions on the rejection of organic solutes in aqueous solutions with nanofiltration”, Journal of Membrane Science, Vol. 322, pp. 52-66, (2008).
172.Verliefde, A.R.D., Cornelissen, E.R., Heijman, S.G., Hoek, E.M.V., Amy, G.L., Van der Bruggen, B. and Van Dijk, J.C., “Influence of Solute-Membrane Affinity on Rejection of Uncharged Organic Solutes by Nanofiltration Membranes”, Environmental Science & Technology, Vol. 43, pp. 2400-2406 (2009).
173.Vincent Vela, M.C., Blanco, S.A., García, J.L. and Rodríguez, E.B., “Analysis of membrane pore blocking models adapted to crossflow ultrafiltration in the ultrafiltration of PEG”, Chemical Engineering Journal, Vol. 149, pp. 232-241 (2009).
174. Vogel, D., Simon, A., Alturki, A.A., Bilitewski, B., Price, W.E. and Nghiem, L.D., “Effects of fouling and scaling on the retention of trace organic contaminants by a nanofiltration membrane: The role of cake-enhanced concentration polarisation”, Separation and Purification Technology, Vol. 73, pp. 256-263 (2010).
175. Vrijenhoek, E. M. Hong, S. and Elimelech, M., “Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes”, Journal of Membrane Science, Vol. 188, pp. 115-128 (2001).
176.Wang, Y.N. and Tang, C.Y., “Nanofiltration membrane fouling by oppositely charged macromolecules: Investigation on flux behavior, foulants mass deposition and solute rejection”, Environmental Science & Technology, Vol. 45, pp. 8941-8947 (2011).
177.Wang, J., Dlamini, D.S., Mishra, A.K., Pendergast, M.T.M., Wong, M.C.Y., Mamba, B.B., Freger, V., Verliefde, A.R.D. and Hoek, E.M.V., “A critical review of transport through osmotic membranes”, Journal of Membrane Science, Vol. 454, pp. 516-537 (2014).
178.Warsinger, D.M., Chakraborty, S., Tow, E.W., Plumlee, M.H., Bellona, C., Loutatidou, S., Karimi, L., Mikelonis, A.M., Achilli, A., Ghassemi, A., Padhye, L.P., Snyder, S.A., Curcio, S., Vecitis, C.D., Arafat, H.A. and Lienhard V, J.H., “A review of polymeric membranes and processes for potable water reuse”, Progress in Polymer Science, Vol. 81, pp. 209-237 (2018).
179.Water Resources Agency, Ministry of Economic Affairs, Taiwan (2017). https://www.wra.gov.tw/6950/7169/7316/7324/24042/?attyear=106%E5%B9%B4
180.Wijmans, J.G. and Baker, R.W., “The solution-diffusion model: a review”, Journal of Membrane Science, Vol. 107, pp. 1-21 (1995).
181.Winter, J., Barbeau, B. and Bérubé, P., “Nanofiltration and Tight Ultrafiltration Membranes for Natural Organic Matter Removal—Contribution of Fouling and Concentration Polarization to Filtration Resistance”, Membranes, Vol. 7, No. 34, pp. 1-14 (2017).
182.World Economic Forum (2017) http://reports.weforum.org/global-risks-2017/part-1-global-risks-2017/
183.Xu, P., Drewes, J.E., Kim, T.U., Bellona, C. and Amy, G., “Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications”, Journal of Membrane Science, Vol. 279, pp. 165-175 (2006).
184.Yang, G., Xing, W. and Xu, N., “Concentration polarization in spiral wound nanofiltration elements”, Desalination, Vol. 154, pp. 89-99 (2003).
185.Yaroshchuk, A.E., “Non-steric mechanisms of nanofiltration: superposition of Donnan and dielectric exclusion”, Separation and Purification Technology, Vol. 22-23, pp. 143-158 (2001).
186.Yaroshchuk, A.E., “Rejection of single salts versus transmembrane volume flow in RO/NF: thermodynamic properties, model of constant coefficients, and its modification”, Journal of Membrane Science, Vol. 198, pp. 285-297 (2002).
187.Yu, C.C., “Investigating the Optimum Operations of a Nanofiltration Membrane Water Recovery Plant”, Master Thesis, Department of Environmental Engineering, Chaoyang University of Technology, Taichung, Taiwan (2017).
188.Zhao, D. and Yu, S., “A review of recent advance in fouling mitigation of NF/RO membranes in water treatment: pretreatment, membrane modification, and chemical cleaning”, Desalination and Water Treatment, Vol. 55, No. 4, pp. 870-891 (2015).
189.Zhu, H., Szymczyk, A. and Balannec, B., “On the salt rejection properties of nanofiltration polyamide membranes formed by interfacial polymerization”, Journal of Membrane Science, Vol. 379 pp. 215-223 (2011).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊