跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 19:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱詠筑
研究生(外文):Yung-Chu Chu
論文名稱:溫度及光質對嫁接用小果番茄苗及茄砧苗生長之影響
論文名稱(外文):Effect of temperature and light quality on seedling growth of cherry tomato and eggplant suitable for grafting
指導教授:陳宗禮陳宗禮引用關係
指導教授(外文):Chung-Li Chen
口試委員:楊藹華王毓華
口試日期:2018-07-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:農藝學系所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:89
中文關鍵詞:茄砧苗小果番茄苗溫度光質育苗環境自動化嫁接
外文關鍵詞:Eggplant rootstockTomato scionTemperatureLight qualityNursery conditionAutomatic grafting
相關次數:
  • 被引用被引用:0
  • 點閱點閱:280
  • 評分評分:
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:1
小果番茄為臺灣重要之經濟作物,常以嫁接於茄砧之嫁接苗的方式栽培,具有抗土傳病害、耐淹水及耐旱等特性。目前臺灣小果番茄嫁接苗多仰賴人工嫁接,未來恐面臨農業人口老化或缺工等問題,有賴發展自動化嫁接。本試驗擬以不同的溫度(20、25、30℃)及光質進行茄砧‘EG203’與小果番茄‘玉女’接穗育苗,調查苗株的生長及葉片形態特性、相對葉綠素含量、可溶性碳水化合物及澱粉含量、葉綠素螢光、蒸散作用、光合作用等生理特性,並進一步利用EMP-300型嫁接機、嫁接輔助機及人工嫁接,進行嫁接測試,找出最適嫁接機使用之茄砧及接穗的育苗環境。不同溫度試驗結果顯示,以溫度25℃處理,茄砧及接穗之莖徑皆達2.0 mm以上,下胚軸長度達3.4 cm以上,為較適合嫁接機使用之苗株規格,且有較佳之植株生長勢。在25℃的育苗條件下,加入T5燈管之全光譜白光、T5燈管加紅光LED燈、T5燈管加藍光LED燈、T5燈管加遠紅外光LED燈等光質試驗,並以溫室栽培者為對照組,試驗結果顯示,對照組及T5燈管加遠紅外光LED燈處理之苗株,不適用於嫁接苗操作。利用T5燈管之全光譜白光、T5燈管加紅光LED燈、T5燈管加藍光LED燈處理之苗株,其株高及下胚軸長度適中,有較佳的生長勢及淨光合作用能力,且機械嫁接速率高,有利於嫁接自動化的推行,為較符合嫁接機苗株規格之育苗環境。
Cherry tomato is an important economic crop in Taiwan and is often grafted onto eggplant to resist soil-borne diseases bacterial wilt and abiotic stress like such as water stress. In the vegetable seedling grafting industry, manual grafting is most commonly used. The aging of farmers resulted in the shortage of labors day by day. In order to solve the problem, grafting machines was developed to replace hand-labor. In this research, we planted tomato and eggplant seedlings at different temperature (20, 25, 30℃) and under different light quality conditions. The leaf morphological characteristics, relative chlorophyll content, total soluble carbohydrate, starch, chlorophyll fluorescence, transpiration, and photosynthesis were investigated for each temperature and light quality. Three grafting method including EMP-300 grafting machine, grafting auxiliary equipment and manual grafting were used to graft tomato scions ‘Rosada’ onto eggplant rootstocks ‘EG203’. The test result was observed in the treatment when stem diameter was 2 mm or larger and hypocotyl length was 3.4 mm or larger for tomato seedlings and eggplant seedlings at 25℃. Subsequently, we set the temperature at 25℃ with different light treatment such as T5 lamp, T5 lamp plus red LED, T5 lamp plus blue LED, T5 lamp plus far-red LED, and glasshouse condition served as a control. Except for the control and T5 lamp plus far-red LED, the other treatments were all suitable for grafting, the stem diameter and hypocotyl length of seedlings all grew used. Nursing tomato and eggplant seedlings at 25℃ with T5 lamp, T5 lamp plus red LED, and T5 lamp plus blue LED, can get not only vigorous seedlings but also good grafting survival rate. Most of all, the grafting efficiency was greatly improved.
摘要 i
Abstract ii
目錄 iii
圖目錄 iv
表目錄 vi
縮寫字對照表 vii
壹、前言 1
貳、前人研究 3
參、材料方法 14
肆、結果 26
一、不同溫度對茄砧苗及小果番茄苗生長之影響 26
二、不同光質對茄砧苗及小果番茄苗生長之影響 40
三、茄砧苗及小果番茄苗自動化嫁接比較試驗 59
伍、討論 72
陸、參考文獻 81
中華民國交通部中央氣象局。2017。中央氣象局觀測資料查詢網。https://e-service.cwb.gov.tw/historydataquery/index.jsp
行政院農業委員會。2017。臺灣農業統計年報。http://agrstat.coa.gov.tw/sdweb/public/official/officialInformation.aspx
行政院農業委員會。2017。農糧署農情報告資源網。http://agr.afa.gov.tw/afa/afa_frame.jsp
王三太、許秀惠。2016。應用嫁接根砧生產設施番茄。p.64-75。設施蔬果病蟲害管理暨安全生產研討會。11月,2016。臺中,臺灣。行政院農業委員會農業試驗所編印,臺中。
何佳勳、楊純明、蕭巧玲。2013。節能型光源發光二極體LED在農業生產上之應用-調節菊花開花期。行政院農業委員會農業試驗所技術服務季刊。24:1-5。
陳世芳、張金元、田雲生。2016。玉女番茄育苗場導入半自動嫁接機之經營效益分析。臺中區農業改良場研究彙報。131:45-55。
陳正次。2005。番茄。p.517-532。臺灣農家要覽農作篇二。財團法人豐年社,臺北。926 pp.
陳宗禮。2009。作物之生長調控。p.81-89。花卉健康管理研討會。6月,2009。雲林,臺灣。行政院農業委員會農業試驗所編印,臺中。
黃泮宮、李美娟。1996。蔬菜穴盤育苗技術。p.161-179。蔬菜自動化育苗技術研討會。1996年。臺北,臺灣。國立臺灣大學農業機械工程學系編印,臺北。
黃圓滿。2014。蔬果嫁接。科學發展。496:14-19。
孫文章、謝桑煙。1998。甘藍穴盤育苗技術。臺南區農業改良場技術專刊。76:2-11。
張金元、田雲生、林學詩。2015。國內外嫁接機械發展現況。p.99-106。種苗產業發展新趨勢研討會。11月,2015。臺南,臺灣。行政院農業委員會臺南區農改場編印,臺南。
張金元、田雲。2017。番茄嫁接苗之生產改進。臺中區農業改良場特刊。133:81-88。
張簡秀容。2006。蔬菜穴盤育苗。豐年。18:44-47。
鄭榮瑞。1996。蔬菜自動化育苗。臺南區農業專訊。17:3-6。
鄭安秀、王仕賢、黃山內。2001。番茄嫁接茄子根砧防治土傳病害。臺南區農業專訊。35:1-3。
錢昌聖、陳葦玲、張金元。2017。光強度、穴格容積與暗處理對於茄砧苗生育之影響。臺中區農業改良場研究彙報。134:41-52。
鍾瑞永、鄭榮瑞、劉政宏、許健興、黃圓滿。2005。套管式番茄苗嫁接機之研製測試。臺南區農業改良場研究彙報。45:74-85。
薛佑光。1992。蔬菜種苗自動化生產系統及育苗技術。種苗科技專訊。2:3-5。
劉依昌、謝明憲、王仕賢。2009。黃色小果番茄臺南24號之育成。臺南區農業改良場研究彙報。54:54-62。
劉敏莉。2012。葉綠素螢光在作物耐熱性篩選之應用。高雄區農業改良場研究彙報。21:1-15。
戴順發、張武男。1997。蔬菜嫁接之研究與發展。科學農業。45:266-274。
Adams, S. R., K. E. Cockshull, and C. R. J. Cave. 2001. Effect of temperature on the growth and development of tomato fruits. Ann. Bot. 88: 869-877.
Agarwal, S., and A. V. Rao. 2000. Tomato lycopene and its role in human health and chronic diseases. Can. Med. Assoc. J. 163:739-744.
Ahuja, I., Vos, R. C. H., Bones, A. M., Hall, R. D. 2010. Plant molecular stress responses face climate change. Trends Plant Sci. 15:664–674.
Apel, K., and Hirt, H. 2004. Reactive oxygen species: metabolism,
oxidative stress, and signal transduction. Annu. Rev. Plant. Biol. 55:373–399.
Brazaityte A., P. Duchovskis, A. Urbonaviciute, G. Samuoliene, J. Jankauskiene, J. Sakalauskaite. G. Šabajeviene, R. Sirtautas, and A. Novickovas. 2010. The effect of light-emitting diodes lighting on the growth of tomato transplants. Zemdirbyste 97:89‒98.
Briggs, W. R. and J. M. Christie. 2002. Phototropins 1 and 2: versatile plantblue-light receptors. Trends Plant Sci. 7:204-210.

Brown, C. S., A. C. Schuerger, and J. C. Sager. 1995. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. J. Amer. Soc. Hort. Sci. 120:808-813.
Carlos L. B., P. W. Barnes, and S. D. Flint. 1995. Inhibition of hypocotyl elongation by ultraviolet‐ B radiation in de‐ etiolating tomato seedlings. I. the photoreceptor. Physiol. Plant 93: 584-592.
Chen, J., X. Wu., X. Yao. Z. Zhu. S. Xu. and D. Zha. 2016. Exogenous 6-benzylaminopurine confers tolerance to low temperature by amelioration of oxidative damage in eggplant (Solanum melongena L.) seedlings. Braz. J. Bot. 39: 409-416.
Coelho, G. C., Marcos, F. G. Rachwal, R. A. Dedecek, G. R. Curcio, K. Nietsche, and E. P. Schenkel. 2007. Effect of light intensity on methylxanthine contents of Ilex paraguariensis A. St. Hil. Syst. Ecol. 35:75-80.
Damian, J. A. and D. R. Ort. 2001. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci. 6:36-42.
Ding, W., Song, L., Wang, X., and Bi, Y. 2010. Effect of abscisic acid on heat stress tolerance in the calli fromtwo ecotypes of Phragmites communis. Biol. Plant 54:607–613.
Eguchi T., R. Hernandez, and C. Kubota. 2016. Far-red and blue light synergistically mitigate intumescence injury of tomato plants grown under ultraviolet-deficit light environment. Hortscience 51:712–719.
Fan, X., Z. Xu, X. Liu, C. Tang, L. Wang and X. Han. 2013. Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Sci. Hortic. 153:50–55.
FAOSTAT. 2016. http://www.fao.org/ faostat/en/#data/qc
Folta, K. M., and S. D. Carvalho. 2015. Photoreceptors and Control of Horticultural Plant Traits. Hortscience 50:1274-1280.

Giliberto, L., G. Perrotta, P. Pallara, J. L. Weller, P. D. Fraser, P. M. Bramley, A. Fiore, M. Tavazza, and G. Giuliano. 2005. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol. 137: 199–208.
Giovannoni, J. 2004. Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc. Natl. Acad. Sci. 101: 9897-9902.
Goins, G. D., L. M. Ruffe, N. A. Cranston, N. C. Yorio, R. M. Wheeler, and J. C. Sager. 2001. Salad crop production under different wavelengths of red light-emitting diodes (LEDs). SAE Technical Paper 1:22-24.
Gómez, C. and C. A. Mitchell. 2015. Growth responses of tomato seedlings to different spectra of supplemental lighting. Hort Sci. 50:112-118.
Hashimoto, T., and M. Tajima. 1980. Effects of ultraviolet irradiation on growth andpigmentation in seedlings. Plant Cell Physiol. 21:1559-1571.
Haque, M. S., K. H. Kjaer, E. Rosenqvist and C. O. Ottosen. 2015. Continuous light increases growth, daily carbon gain, antioxidants, and alters carbohydrate metabolism in a cultivated and a wild tomato species. Plant Sci. 6:522-533.
Hogewoning, S. W., Trouwborst, G., Maljaars, H., Poorter, H., Ieperen, W. Van, and J. Harbinson. 2010. Blue light dose-responses of leaf photosynthesis, morphology, andchemical composition of Cucumis sativus grown under different combinationsof red and blue light. J. Exp. Bot. 61:3107-3117.
Islam, S. Z., and M. Babadoost. 2002. Effect of red light treatment of seedlings of pepper, pumpkin, andtomato on the occurrence of phytophthora damping-off. Hortscience 37:678–681.
Kagawa, T., T. Sakai, N. Suetsugo, K. Oikawa, S. Ishiguro, T. Kato, S. Nanya, K., Y. Ishigami, S. Hikosaka, and E. Goto. 2012. Effects of blue and red Light on stem elongation and flowering of tomato Seedlings. Acta. Hortic. 956:261-266.

Kataoka, I., Sugiyama, A., and Beppu, K. 2003. Role of ultraviolet radiation in accumulation of anthocyanin in berries of Gros Colman'grapes (Vitis vinifera L.). J. Jpn. Soc. Hortic. Sci. 72:1-6.
Khah, E.M., E. Kakava, A. Mavromatis, D. Chachalis, and C. Goulas. 2006. Effect of grafting on growth and yield of tomato (Lycopersicon esculentum Mill.) in greenhouse and open-field. J. Appl. Hortic. 8:3-7.
Kim, H. H., R. M. Wheeler, and J. C. Sager. Evaluation of lettuce growth using supplemental green light withred and blue light-emitting diodes in a controlled environment - a review of research at Kennedy space center. Acta. Hortic. 711:111-120.
Kotak, S., J. Larkindale, U. Lee, P. V. Koskull-Do¨ring, E. Vierling, and K. Scharf. 2007. Complexity of the heat stress response in plants. Plant Biol. 10:310-316.
Kubota, C., S. Seiyama, and T. Kozai. 2002. Manipulation of photoperiod and light intensity in low-temperature storage of eggplant plug seedlings. Sci. Hortic. 94:13-20.
Lee, J. M., C. Kubota, S. J. Tsao, and M. Oda. 2010. Current status of vegetable grafting: diffusion, grafting techniques, automation. Sci. Hortic. 127:93-105.
Liu, Y., S. Roof, Z. Ye, C. Barry, A. V. Tuinen, J. Vrebalov, A. Brazaitytė, P. Duchovskis, A. Urbonavičiūtė, G. Samuolienė, J. Jankauskienė, J. Sakalauskaitė, and A. Novičkovas. 2010. The effect of light-emitting diodes lighting on the growth of tomato transplants. Zemdirbyste 97:89-98.
Liu, X. Y., R. S. Guo, Z. G. Xu, and X. L. Jiao. 2011. Regulation of chloroplast ultrastructure, cross-section anatomy of leaves, and morphology of stomata of cherry tomato by different light irradiations of light-emitting diodes. Hortscience 46:217–221.
Lu, N., T. Mauo, M. Johkan, M. Hohjo, S. Tsukagoshi, Y. Ito, and Y. Shinohara. 2012. Effects of supplemental lighting with light-emitting diodes (LEDs) on tomato yield and quality of single-truss tomato plants grown at high planting density. Environ. Con. Biol. 50:63-74. 
Lund, J. B., T. J. Blom, and J. M. Aaslyng. 2007. End-of-day Lighting with Different Red/Far-red Ratios Using Lightemitting Diodes Affects Plant Growth of Chrysanthemum · morifolium Ramat. ‘Coral Charm’. Hortscience 42:1609-1611.
Matsuda, R., N. Ozawa and K. Fujiwara. 2014. Leaf photosynthesis, plant growth, and carbohydrate accumulation of tomato under different photoperiods and diurnal temperature differences. Sci. Hortic. 170:150–158.
Matsuda, R., T. Yamano, K. Murakami and K. Fujiwara. 2016. Effects of spectral distribution and photosynthetic photon flux density for overnight LED light irradiation on tomato seedling growth and leaf injury. Sci. Hortic. 198:363–369.
Misael, O. V., L. Greici, C. O. Jeanett, J. C. Jos´e, D. V. Francisco, and A. L. Jos´e. 2010. Changes in Protein Expression Associated with
Chilling Injury in Tomato Fruit. J. Amer. Soc. Hort. Sci. 135:83–89.
Mortensen, L. M., and E. Stromme. 1987. Effects of Light Quality on some Greenhouse Crops. Sci. Hortic. 33:27-36.
Murage, E. N., N. Watashiro, and M. Masuda. 1997. Influence of light quality, PPFD and temperature on leaf chlorosis of eggplants grown under continuous illumination. Sci. Hortic. 68:73-82.
Mullineaux, P., and S. Karpinski. 2002. Signal transduction in response to excess light: getting out of the chloroplast. Curr. Opin. Plant Biol. 5:43-48.
Nanya, K., Y. Ishigami, S. Hikosaka and E. Goto. 2012. Effects of blue and red light on stem elongation and flowering of tomato seedlings. Acta. Hort. 956:261-266.
Novičkovas A., A. Brazaitytė, P. Duchovskis, J. Jankauskienė, G. Samuolienė, A. Viršilė, and R. Sirtautas. 2012. Solid-state lamps (LEDs) for the short-wavelength supplementarylghting in greenhouses: experimental results with cucumber. Acta. Hortic. 927:723-730.

O’Carrigan, A., E. Hinde, N. Lu, X. Xu, H. Duan, G. Huang, M. Mak, B. Bellotti, and Z. Chen. 2014. Effects of light irradiance on stomatal regulation and growth of tomato. Environ. Exp. Bot. 98:65-73.
Ogweno, J., Song, X., Shi, K., Hu, W., Mao, W., Zhou, Y., Yu, J., and Nogues, S. 2008. Brassinosteroids alleviateheat-induced inhibition of photosynthesis byincreasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J. Plant Growth Regul. 27:49–57.
Park, E., Z. Jeknic, A. Sakamoto, J. Denoma1, R. Yuwansiri, N. Murata, and T. H. Chen. 2004. Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. Plant J. 40:474-487.
Peet, M. M., S. Sato, and R. G. Gardner. 1998. Comparing heat stress effects on male-fertile and male-steriletomatoes. Plant Cell Environ. 21:225–231.
Rivero, R. M., J. M. Ruiz, P. C. Garc´a, L. R. Lo´pez-Lefebre, E. Sa´nchez, and L. Romero. 2001. Resistance to cold and heat stress: accumulation of phenoliccompounds in tomato and watermelon plants. Plant Sci.160:315-321.
Shanmugam, S., Kjaer, K. H., Ottosen, C. O., Rosenqvist, E., Kumari, Sharma, D., and Wollenweber, B. 2013. Thealleviating effect of elevated CO2 on heat stress susceptibilityof two wheat (Triticum aestivum L.) cultivars. J. Agron. Crop Sci. 199:340-350.
Story, E. N., R. E. Kopec, S. J. Schwartz, and G. K. Harris. 2010. An update on the health effects of tomato lycopene. Annu. Rev. Food Sci. Technol. 1:189-210.
Tabata, K. Okada, and M. Wada. 2001. Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291: 2138–2141.
Velez-Ramirez, A. I., Ieperen, V. W., D. Vreugdenhil, and F. F. Millenaar. 2011. Plants under continuous light. Trends Plant Sci. 16:310-318.

Vu, N. T., S. H. Kim, D. C. Vu and I. S. Kim. 2015. Effect of storage temperature and duration on growth and quality of tomato plug seedlings. J. Agr. Sci. 27:30-40.
Wintermans, J. F. G. M., and A. D. Mots. 1965. Spectrophotometric char-
acteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim Biophys. Acta. 169:448-453.
Wu, X. X., H. D. Ding, J. L. Chen, Z. W. Zhu, and D. S. Zha. 2015. Exogenous spray application of 24-epibrassinolide induced changes in photosynthesis and antioxidant defences against chilling stress in eggplant (Solanum melongena L.) seedlings. J. Hortic. Sci. Biotech. 90:217-225.
Wu, X., X. Yao, J. Chen, Z. Zhu, H. Zhang, and D. Zha. 2013. Brassinosteroids protect photosynthesis and antioxidant system of eggplant seedlings from high-temperature stress. Acta. Physiol. Plant 36:251-261.
Xua, H., Q. Xu, F. Li, Y. Feng, F. Qina, and W. Fange. 2012. Applications of xerophytophysiology in plant production—LED blue light as a stimulus improved the tomato crop. Sci. Hortic. 148:190–196.
Xu, Z., Shimizu, H., Yagasaki, Y., Ito, S., Zheng, Y., and Zhou, G. 2013. Interactive effects of elevated CO2, drought, and warming on plants. J. Plant Growth Regul. 32:692–707.
Ying, L. X., G. S. Rong, X. Z. Gang, and J. X. Lei. 2011. Regulation of chloroplast ultrastructure, cross-section anatomy of feaves, and morphologyof stomata of cherry tomato by differentlight irradiations of light-emitting diodes. Hortscience 46:217–221.
Yoshida, S., D. A. Forno, J. H. Cock, and K. A. Gomez. 1976. Determination of sugar and starch in plant tissue. pp.46-49. In Laboratory Manual for Physiological Studies of Rice. International Rice Research Insititute, Los Banos, Laguna, Philippines.
Yu, J. h., Y. J.Shu, J. f. Lu, G. b. Zhang. 2004. Influences of low temperature and poor light on photosynthetic characteristics in eggplant seedlings. Acta. Bot. Sin. 24:831-836.

Zhang Z.Z., and B.Q. Huang. 2011. Field resistance evaluation of 23 eggplant varieties against high temperature and preliminary research on resistance mechanism. Chin. J. Trop. Crops 32:61-65.
Zu, Y. g., H. H. Pang, J. H. Yu, D. W. Li, X. X. Wei, Y. X. Gao, and L. Tong. 2010. Responses in the morphology, physiology and biochemistry of Taxus chinensis var. mairei grown under supplementary UV-B radiation. J. Photochem. Photobiol. 98:152-158.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top