|
中華民國交通部中央氣象局。2017。中央氣象局觀測資料查詢網。https://e-service.cwb.gov.tw/historydataquery/index.jsp 行政院農業委員會。2017。臺灣農業統計年報。http://agrstat.coa.gov.tw/sdweb/public/official/officialInformation.aspx 行政院農業委員會。2017。農糧署農情報告資源網。http://agr.afa.gov.tw/afa/afa_frame.jsp 王三太、許秀惠。2016。應用嫁接根砧生產設施番茄。p.64-75。設施蔬果病蟲害管理暨安全生產研討會。11月,2016。臺中,臺灣。行政院農業委員會農業試驗所編印,臺中。 何佳勳、楊純明、蕭巧玲。2013。節能型光源發光二極體LED在農業生產上之應用-調節菊花開花期。行政院農業委員會農業試驗所技術服務季刊。24:1-5。 陳世芳、張金元、田雲生。2016。玉女番茄育苗場導入半自動嫁接機之經營效益分析。臺中區農業改良場研究彙報。131:45-55。 陳正次。2005。番茄。p.517-532。臺灣農家要覽農作篇二。財團法人豐年社,臺北。926 pp. 陳宗禮。2009。作物之生長調控。p.81-89。花卉健康管理研討會。6月,2009。雲林,臺灣。行政院農業委員會農業試驗所編印,臺中。 黃泮宮、李美娟。1996。蔬菜穴盤育苗技術。p.161-179。蔬菜自動化育苗技術研討會。1996年。臺北,臺灣。國立臺灣大學農業機械工程學系編印,臺北。 黃圓滿。2014。蔬果嫁接。科學發展。496:14-19。 孫文章、謝桑煙。1998。甘藍穴盤育苗技術。臺南區農業改良場技術專刊。76:2-11。 張金元、田雲生、林學詩。2015。國內外嫁接機械發展現況。p.99-106。種苗產業發展新趨勢研討會。11月,2015。臺南,臺灣。行政院農業委員會臺南區農改場編印,臺南。 張金元、田雲。2017。番茄嫁接苗之生產改進。臺中區農業改良場特刊。133:81-88。 張簡秀容。2006。蔬菜穴盤育苗。豐年。18:44-47。 鄭榮瑞。1996。蔬菜自動化育苗。臺南區農業專訊。17:3-6。 鄭安秀、王仕賢、黃山內。2001。番茄嫁接茄子根砧防治土傳病害。臺南區農業專訊。35:1-3。 錢昌聖、陳葦玲、張金元。2017。光強度、穴格容積與暗處理對於茄砧苗生育之影響。臺中區農業改良場研究彙報。134:41-52。 鍾瑞永、鄭榮瑞、劉政宏、許健興、黃圓滿。2005。套管式番茄苗嫁接機之研製測試。臺南區農業改良場研究彙報。45:74-85。 薛佑光。1992。蔬菜種苗自動化生產系統及育苗技術。種苗科技專訊。2:3-5。 劉依昌、謝明憲、王仕賢。2009。黃色小果番茄臺南24號之育成。臺南區農業改良場研究彙報。54:54-62。 劉敏莉。2012。葉綠素螢光在作物耐熱性篩選之應用。高雄區農業改良場研究彙報。21:1-15。 戴順發、張武男。1997。蔬菜嫁接之研究與發展。科學農業。45:266-274。 Adams, S. R., K. E. Cockshull, and C. R. J. Cave. 2001. Effect of temperature on the growth and development of tomato fruits. Ann. Bot. 88: 869-877. Agarwal, S., and A. V. Rao. 2000. Tomato lycopene and its role in human health and chronic diseases. Can. Med. Assoc. J. 163:739-744. Ahuja, I., Vos, R. C. H., Bones, A. M., Hall, R. D. 2010. Plant molecular stress responses face climate change. Trends Plant Sci. 15:664–674. Apel, K., and Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant. Biol. 55:373–399. Brazaityte A., P. Duchovskis, A. Urbonaviciute, G. Samuoliene, J. Jankauskiene, J. Sakalauskaite. G. Šabajeviene, R. Sirtautas, and A. Novickovas. 2010. The effect of light-emitting diodes lighting on the growth of tomato transplants. Zemdirbyste 97:89‒98. Briggs, W. R. and J. M. Christie. 2002. Phototropins 1 and 2: versatile plantblue-light receptors. Trends Plant Sci. 7:204-210. Brown, C. S., A. C. Schuerger, and J. C. Sager. 1995. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. J. Amer. Soc. Hort. Sci. 120:808-813. Carlos L. B., P. W. Barnes, and S. D. Flint. 1995. Inhibition of hypocotyl elongation by ultraviolet‐ B radiation in de‐ etiolating tomato seedlings. I. the photoreceptor. Physiol. Plant 93: 584-592. Chen, J., X. Wu., X. Yao. Z. Zhu. S. Xu. and D. Zha. 2016. Exogenous 6-benzylaminopurine confers tolerance to low temperature by amelioration of oxidative damage in eggplant (Solanum melongena L.) seedlings. Braz. J. Bot. 39: 409-416. Coelho, G. C., Marcos, F. G. Rachwal, R. A. Dedecek, G. R. Curcio, K. Nietsche, and E. P. Schenkel. 2007. Effect of light intensity on methylxanthine contents of Ilex paraguariensis A. St. Hil. Syst. Ecol. 35:75-80. Damian, J. A. and D. R. Ort. 2001. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci. 6:36-42. Ding, W., Song, L., Wang, X., and Bi, Y. 2010. Effect of abscisic acid on heat stress tolerance in the calli fromtwo ecotypes of Phragmites communis. Biol. Plant 54:607–613. Eguchi T., R. Hernandez, and C. Kubota. 2016. Far-red and blue light synergistically mitigate intumescence injury of tomato plants grown under ultraviolet-deficit light environment. Hortscience 51:712–719. Fan, X., Z. Xu, X. Liu, C. Tang, L. Wang and X. Han. 2013. Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Sci. Hortic. 153:50–55. FAOSTAT. 2016. http://www.fao.org/ faostat/en/#data/qc Folta, K. M., and S. D. Carvalho. 2015. Photoreceptors and Control of Horticultural Plant Traits. Hortscience 50:1274-1280. Giliberto, L., G. Perrotta, P. Pallara, J. L. Weller, P. D. Fraser, P. M. Bramley, A. Fiore, M. Tavazza, and G. Giuliano. 2005. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol. 137: 199–208. Giovannoni, J. 2004. Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc. Natl. Acad. Sci. 101: 9897-9902. Goins, G. D., L. M. Ruffe, N. A. Cranston, N. C. Yorio, R. M. Wheeler, and J. C. Sager. 2001. Salad crop production under different wavelengths of red light-emitting diodes (LEDs). SAE Technical Paper 1:22-24. Gómez, C. and C. A. Mitchell. 2015. Growth responses of tomato seedlings to different spectra of supplemental lighting. Hort Sci. 50:112-118. Hashimoto, T., and M. Tajima. 1980. Effects of ultraviolet irradiation on growth andpigmentation in seedlings. Plant Cell Physiol. 21:1559-1571. Haque, M. S., K. H. Kjaer, E. Rosenqvist and C. O. Ottosen. 2015. Continuous light increases growth, daily carbon gain, antioxidants, and alters carbohydrate metabolism in a cultivated and a wild tomato species. Plant Sci. 6:522-533. Hogewoning, S. W., Trouwborst, G., Maljaars, H., Poorter, H., Ieperen, W. Van, and J. Harbinson. 2010. Blue light dose-responses of leaf photosynthesis, morphology, andchemical composition of Cucumis sativus grown under different combinationsof red and blue light. J. Exp. Bot. 61:3107-3117. Islam, S. Z., and M. Babadoost. 2002. Effect of red light treatment of seedlings of pepper, pumpkin, andtomato on the occurrence of phytophthora damping-off. Hortscience 37:678–681. Kagawa, T., T. Sakai, N. Suetsugo, K. Oikawa, S. Ishiguro, T. Kato, S. Nanya, K., Y. Ishigami, S. Hikosaka, and E. Goto. 2012. Effects of blue and red Light on stem elongation and flowering of tomato Seedlings. Acta. Hortic. 956:261-266. Kataoka, I., Sugiyama, A., and Beppu, K. 2003. Role of ultraviolet radiation in accumulation of anthocyanin in berries of Gros Colman'grapes (Vitis vinifera L.). J. Jpn. Soc. Hortic. Sci. 72:1-6. Khah, E.M., E. Kakava, A. Mavromatis, D. Chachalis, and C. Goulas. 2006. Effect of grafting on growth and yield of tomato (Lycopersicon esculentum Mill.) in greenhouse and open-field. J. Appl. Hortic. 8:3-7. Kim, H. H., R. M. Wheeler, and J. C. Sager. Evaluation of lettuce growth using supplemental green light withred and blue light-emitting diodes in a controlled environment - a review of research at Kennedy space center. Acta. Hortic. 711:111-120. Kotak, S., J. Larkindale, U. Lee, P. V. Koskull-Do¨ring, E. Vierling, and K. Scharf. 2007. Complexity of the heat stress response in plants. Plant Biol. 10:310-316. Kubota, C., S. Seiyama, and T. Kozai. 2002. Manipulation of photoperiod and light intensity in low-temperature storage of eggplant plug seedlings. Sci. Hortic. 94:13-20. Lee, J. M., C. Kubota, S. J. Tsao, and M. Oda. 2010. Current status of vegetable grafting: diffusion, grafting techniques, automation. Sci. Hortic. 127:93-105. Liu, Y., S. Roof, Z. Ye, C. Barry, A. V. Tuinen, J. Vrebalov, A. Brazaitytė, P. Duchovskis, A. Urbonavičiūtė, G. Samuolienė, J. Jankauskienė, J. Sakalauskaitė, and A. Novičkovas. 2010. The effect of light-emitting diodes lighting on the growth of tomato transplants. Zemdirbyste 97:89-98. Liu, X. Y., R. S. Guo, Z. G. Xu, and X. L. Jiao. 2011. Regulation of chloroplast ultrastructure, cross-section anatomy of leaves, and morphology of stomata of cherry tomato by different light irradiations of light-emitting diodes. Hortscience 46:217–221. Lu, N., T. Mauo, M. Johkan, M. Hohjo, S. Tsukagoshi, Y. Ito, and Y. Shinohara. 2012. Effects of supplemental lighting with light-emitting diodes (LEDs) on tomato yield and quality of single-truss tomato plants grown at high planting density. Environ. Con. Biol. 50:63-74. Lund, J. B., T. J. Blom, and J. M. Aaslyng. 2007. End-of-day Lighting with Different Red/Far-red Ratios Using Lightemitting Diodes Affects Plant Growth of Chrysanthemum · morifolium Ramat. ‘Coral Charm’. Hortscience 42:1609-1611. Matsuda, R., N. Ozawa and K. Fujiwara. 2014. Leaf photosynthesis, plant growth, and carbohydrate accumulation of tomato under different photoperiods and diurnal temperature differences. Sci. Hortic. 170:150–158. Matsuda, R., T. Yamano, K. Murakami and K. Fujiwara. 2016. Effects of spectral distribution and photosynthetic photon flux density for overnight LED light irradiation on tomato seedling growth and leaf injury. Sci. Hortic. 198:363–369. Misael, O. V., L. Greici, C. O. Jeanett, J. C. Jos´e, D. V. Francisco, and A. L. Jos´e. 2010. Changes in Protein Expression Associated with Chilling Injury in Tomato Fruit. J. Amer. Soc. Hort. Sci. 135:83–89. Mortensen, L. M., and E. Stromme. 1987. Effects of Light Quality on some Greenhouse Crops. Sci. Hortic. 33:27-36. Murage, E. N., N. Watashiro, and M. Masuda. 1997. Influence of light quality, PPFD and temperature on leaf chlorosis of eggplants grown under continuous illumination. Sci. Hortic. 68:73-82. Mullineaux, P., and S. Karpinski. 2002. Signal transduction in response to excess light: getting out of the chloroplast. Curr. Opin. Plant Biol. 5:43-48. Nanya, K., Y. Ishigami, S. Hikosaka and E. Goto. 2012. Effects of blue and red light on stem elongation and flowering of tomato seedlings. Acta. Hort. 956:261-266. Novičkovas A., A. Brazaitytė, P. Duchovskis, J. Jankauskienė, G. Samuolienė, A. Viršilė, and R. Sirtautas. 2012. Solid-state lamps (LEDs) for the short-wavelength supplementarylghting in greenhouses: experimental results with cucumber. Acta. Hortic. 927:723-730. O’Carrigan, A., E. Hinde, N. Lu, X. Xu, H. Duan, G. Huang, M. Mak, B. Bellotti, and Z. Chen. 2014. Effects of light irradiance on stomatal regulation and growth of tomato. Environ. Exp. Bot. 98:65-73. Ogweno, J., Song, X., Shi, K., Hu, W., Mao, W., Zhou, Y., Yu, J., and Nogues, S. 2008. Brassinosteroids alleviateheat-induced inhibition of photosynthesis byincreasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J. Plant Growth Regul. 27:49–57. Park, E., Z. Jeknic, A. Sakamoto, J. Denoma1, R. Yuwansiri, N. Murata, and T. H. Chen. 2004. Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. Plant J. 40:474-487. Peet, M. M., S. Sato, and R. G. Gardner. 1998. Comparing heat stress effects on male-fertile and male-steriletomatoes. Plant Cell Environ. 21:225–231. Rivero, R. M., J. M. Ruiz, P. C. Garc´a, L. R. Lo´pez-Lefebre, E. Sa´nchez, and L. Romero. 2001. Resistance to cold and heat stress: accumulation of phenoliccompounds in tomato and watermelon plants. Plant Sci.160:315-321. Shanmugam, S., Kjaer, K. H., Ottosen, C. O., Rosenqvist, E., Kumari, Sharma, D., and Wollenweber, B. 2013. Thealleviating effect of elevated CO2 on heat stress susceptibilityof two wheat (Triticum aestivum L.) cultivars. J. Agron. Crop Sci. 199:340-350. Story, E. N., R. E. Kopec, S. J. Schwartz, and G. K. Harris. 2010. An update on the health effects of tomato lycopene. Annu. Rev. Food Sci. Technol. 1:189-210. Tabata, K. Okada, and M. Wada. 2001. Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291: 2138–2141. Velez-Ramirez, A. I., Ieperen, V. W., D. Vreugdenhil, and F. F. Millenaar. 2011. Plants under continuous light. Trends Plant Sci. 16:310-318. Vu, N. T., S. H. Kim, D. C. Vu and I. S. Kim. 2015. Effect of storage temperature and duration on growth and quality of tomato plug seedlings. J. Agr. Sci. 27:30-40. Wintermans, J. F. G. M., and A. D. Mots. 1965. Spectrophotometric char- acteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim Biophys. Acta. 169:448-453. Wu, X. X., H. D. Ding, J. L. Chen, Z. W. Zhu, and D. S. Zha. 2015. Exogenous spray application of 24-epibrassinolide induced changes in photosynthesis and antioxidant defences against chilling stress in eggplant (Solanum melongena L.) seedlings. J. Hortic. Sci. Biotech. 90:217-225. Wu, X., X. Yao, J. Chen, Z. Zhu, H. Zhang, and D. Zha. 2013. Brassinosteroids protect photosynthesis and antioxidant system of eggplant seedlings from high-temperature stress. Acta. Physiol. Plant 36:251-261. Xua, H., Q. Xu, F. Li, Y. Feng, F. Qina, and W. Fange. 2012. Applications of xerophytophysiology in plant production—LED blue light as a stimulus improved the tomato crop. Sci. Hortic. 148:190–196. Xu, Z., Shimizu, H., Yagasaki, Y., Ito, S., Zheng, Y., and Zhou, G. 2013. Interactive effects of elevated CO2, drought, and warming on plants. J. Plant Growth Regul. 32:692–707. Ying, L. X., G. S. Rong, X. Z. Gang, and J. X. Lei. 2011. Regulation of chloroplast ultrastructure, cross-section anatomy of feaves, and morphologyof stomata of cherry tomato by differentlight irradiations of light-emitting diodes. Hortscience 46:217–221. Yoshida, S., D. A. Forno, J. H. Cock, and K. A. Gomez. 1976. Determination of sugar and starch in plant tissue. pp.46-49. In Laboratory Manual for Physiological Studies of Rice. International Rice Research Insititute, Los Banos, Laguna, Philippines. Yu, J. h., Y. J.Shu, J. f. Lu, G. b. Zhang. 2004. Influences of low temperature and poor light on photosynthetic characteristics in eggplant seedlings. Acta. Bot. Sin. 24:831-836. Zhang Z.Z., and B.Q. Huang. 2011. Field resistance evaluation of 23 eggplant varieties against high temperature and preliminary research on resistance mechanism. Chin. J. Trop. Crops 32:61-65. Zu, Y. g., H. H. Pang, J. H. Yu, D. W. Li, X. X. Wei, Y. X. Gao, and L. Tong. 2010. Responses in the morphology, physiology and biochemistry of Taxus chinensis var. mairei grown under supplementary UV-B radiation. J. Photochem. Photobiol. 98:152-158.
|