跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/21 05:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇裕迺
研究生(外文):YU-NAI SU
論文名稱:以異氰酸鹽官能基化石墨烯氧化物修飾聚乙烯醇質子交換膜之研究
論文名稱(外文):A Study on Isocyanate-functionallized Graphene Oxide/PVA Nanocomposites as Proton Exchange Membranes
指導教授:林智汶
指導教授(外文):Chi-Wen Lin
口試委員:林智汶黃振家杜景順
口試委員(外文):Chi-Wen LinChen-Chia HuangJing-Shan Do
口試日期:2017-07-25
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:88
中文關鍵詞:石墨烯氧化物異氰酸酯質子交換膜
外文關鍵詞:graphene oxide (GO)isocyanateproton exchange membrane (PEM)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:632
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究主旨在探討以異氰酸鹽(isocyanate)官能化石墨烯氧化物(Graphene oxide, GO)修飾聚乙烯醇質子交換膜之研究。以Hummer’s法將天然石墨氧化,製備石墨烯氧化物,再以不同比例之4,4-二異氰酸酯二環已基甲烷(4,4’-Methylenebis(cyclohexyl isocyanate), HDI)官能化石墨烯氧化物。HDI其分子結構在兩端各帶有一個異氰酸酯(-NCO)官能基團,可以與羥基與羧基反應,形成醯胺與胺基甲酸脂,HDI官能化GO大致可以分呈三種情況:(1)兩片GO間接上HDI兩端、(2)HDI兩端接在同片GO表面、(3)在GO表面上接上一端,而另一端-NCO保留未反應。為了討論改質接枝位置的差異,後續以FTIR分析其官能基團,再以XRD分依其層間距變化、SEM觀察表面形態變化,最後以EDS元素分析推測接枝數量的多寡。由結果來看,40 mmol HDI/1g GO(iGO40)表面會帶有做多的-NCO官能基團,當比例上升到60 mmol HDI/1g GO(iGO60)時,表面帶有的-NCO官能基團數量反而會下降,推測是在高改質比例時,會受到分子結構立體阻礙的影響,影響接枝的位置。
以表面異氰酸酯官能基團的多管區分,將iGO10、iGO20與iGO40加入到PVA/SSA/PSSA-co-MA複合膜中,期望藉由酸鹼對的互動強化質子傳導的跳躍機制,克服GO加入會因酯化反應,複合膜進一步交聯的結果使得質子傳導下降的問題。後續以質子傳導率、甲醇滲透率、含水率與選擇率來評估薄膜的性能。由結果來看,酸鹼對的互動有助於質子傳導的增加,又因表面有異氰酸酯官能基團可與PVA上的羥基(-OH)反應,能使薄膜交聯,能使甲醇滲透進一步減少,在PVA/SSA20/PSSA-co-MA60/iGO40 0.5%時會有最高的選擇率,質子傳導率為23.38 mS/cm,甲醇滲透率為3.79×10-7cm2/s。

In this paper, the purpose of this study is to study the modification of polyvinyl
alcohol proton exchange membrane with isocyanate functionalized graphene oxide
(GO). The natural graphite was oxidized by Hummer's method to prepare graphene
oxide and functionalized graphene oxide with different proportions of 4,4'-diisocyanate dicyclohexylmethane (4,4'-Methylenebis (cyclohexyl isocyanate), HDI). HDI its molecular structure at both ends with an isocyanate (-NCO) functional groups, with hydroxyl and carboxyl reaction, the formation of amide and aminocarboxylic acid, HDI functionalized GO can be divided into three cases: (1) two pieces of GO indirectly on both ends of HDI, (2) HDI at both ends connected to the same GO surface, (3) on the GO surface connected to one end, and the other end -NCO remains unreacted. In order to discuss the difference of modified grafting sites, the functional groups were analyzed by FTIR, and the change of the interlayer distance was observed by XRD. The morphological changes were observed by SEM. Finally, the number of grafts was deduced by EDS element analysis. From the results, the surface of 40 mmol HDI / 1 g GO (iGO40) with the largest number of -NCO functional groups, when the proportion rose to 60mmol HDI / 1g GO (iGO60), the surface with the number of -NCO functional groups But will drop, push the test in the high-quality ratio, will be affected by the molecular structure of the impact of three-dimensional, affecting the graft position. In the PVA / SSA / PSSA-co-MA composite membrane, iGO10, iGO20 and iGO40 were added to the surface isocyanate functional groups, and it was expected that the activation of proton conduction by the interaction between acid and alkali pairs Will be due to esterification reaction, composite film further cross-linking results in the problem of proton conduction decline. The performance of the film was evaluated by proton conductivity, methanol permeability, water content and selectivity. From the results, the interaction between acid and alkali pairs contributes to the increase of proton conduction, and because of the presence of isocyanate functional groups on the surface with hydroxyl groups (-OH) on PVA, the film can be crosslinked to further reduce the methanol infiltration , The highest selectivity was observed at PVA / SSA20 / PSSAco-MA60 / iGO40 0.5%, the proton conductivity was 23.38 mS / cm, and the methanol permeability was 3.79 × 10-7 cm2 / s.

摘要i
ABSTRACTii
目錄iv
表目錄vii
圖目錄viii
第1章緒論1
1.1 前言1
1.2 燃料電池的種類2
1.3 質子交換膜燃料電池3
1.3.1 膜材的種類5
1.3.2 商業化質子交換膜(Nafion7
1.4 直接甲醇型燃料電池8
1.5 影響質子交換膜中質子性能的因素9
1.5.1 可調參數9
1.5.2 結構的特性10
1.6 關於石墨烯與石墨烯氧化物12
1.6.1 石墨烯的發現12
1.6.2 石墨烯的導電性與熱傳導性15
1.6.3 石墨烯的機械性質15
1.6.4 製備石墨烯之方法16
1.7 研究動機18
第2章文獻回顧20
2.1 質子交換膜中的傳導機制20
2.1.1 質子交換膜中質子與甲醇的傳導機制20
2.1.2 質子傳導的水合形態21
2.2 以聚乙烯醇為基材之質子交換膜24
2.2.1 PVA化學交聯24
2.2.2 PVA與PSSA-co-MA相關研究25
2.3 石墨烯氧化物(Graphene oxide, GO)27
2.3.1 應用於質子交換膜27
2.3.2 磺酸官能化28
2.3.3 異氰酸酯官能化30
第3章儀器與實驗原理36
3.1 傅立葉紅外線吸收光譜儀(Fourier Transform Infrared, FTIR)36
3.2 X光繞射分析儀(X-ray diffraction, XRD)36
3.3 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)37
3.4 能量散佈光譜儀(Energy Dispersive Spectrometer, EDS)37
3.5 交流阻抗分析(AC-Impendence)38
3.6 電化學阻抗圖譜(Electrochemical impedence spectroscopy, EIS)43
3.7 甲醇滲透率(Methanol Permeability)44
第4章實驗設備與步驟47
4.1 實驗藥品47
4.2 實驗儀器48
4.3 無機物製備49
4.3.1 石墨烯氧化物(Graphene oxide, GO)製備49
4.3.2 4,4-二異氰酸酯二環己基甲烷(HDI)改質GO(iGO)50
4.4 薄膜製備51
4.4.1 PSSA-co-MA前處理51
4.4.2 PVA/SSA/PSSA-co-MA複合膜51
4.4.3 iGO複合膜52
4.5 官能化石墨烯氧化物之分析與鑑定53
4.5.1 傅立葉轉換紅外線分光分析(FTIR-ATR)53
4.5.2 X光繞射分析53
4.6 薄膜分析與鑑定53
4.6.1 飽和含水率53
4.6.2 交流阻抗實驗54
4.6.3 甲醇滲透率實驗55
第5章結果與討論56
5.1 石墨烯氧化物(GO)之分析56
5.1.1 FTIR分析56
5.1.2 XRD分析57
5.1.3 SEM分析58
5.2 異氰酸酯官能化石墨烯氧化物(iGO)之分析60
5.2.1 FTIR分析61
5.2.2 XRD分析64
5.2.3 SEM分析66
5.2.4 EDS分析67
5.3 複合膜之分析69
5.3.1 基本性質分析總表69
5.3.2 質子傳導率71
5.3.3 甲醇滲透率73
5.3.4 含水率75
5.3.5 選擇率76
5.3.6 接近領域的比較78
第6章結論79
參考文獻82

[1] G.Apanel andE.Johnson, “Direct methanol fuel cells - Ready to go commercial?,”
Fuel Cells Bull., vol. 2004, no. 11, pp. 12–17, 2004.
[2] S. J.Peighambardoust, S.Rowshanzamir, andM.Amjadi, Review of the proton
exchange membranes for fuel cell applications, vol. 35, no. 17. Elsevier Ltd,
2010.
[3] Y.Wei, L.Shen, Z.Wang, W. D.Yang, H.Zhu, andH.Liu, “A novel membrane for
DMFC - Na2Ti3O7 nanotubes/Nafion?? composite membrane,” Int. J.
Hydrogen Energy, vol. 36, no. 8, pp. 5088–5095, 2011.
[4] L.Shen, Z.Sun, Y.Chu, J.Zou, andM. A.Deshusses, “Novel sulfonated Nafion®-
based composite membranes with pillararene as selective artificial proton
channels for application in direct methanol fuel cells,” Int. J. Hydrogen Energy,
vol. 40, no. 38, pp. 13071–13079, 2015.
[5] D. S.Kim, G. P.Robertson, M. D.Guiver, andY. M.Lee, “Synthesis of highly
fluorinated poly(arylene ether)s copolymers for proton exchange membrane
materials,” J. Memb. Sci., vol. 281, no. 1–2, pp. 111–120, 2006.
[6] C.Bi, H.Zhang, S.Xiao, Y.Zhang, Z.Mai, andX.Li, “Grafted porous
PTFE/partially fluorinated sulfonated poly(arylene ether ketone) composite
membrane for PEMFC applications,” J. Memb. Sci., vol. 376, no. 1–2, pp. 170–
178, 2011.
[7] M.Rikukawa andK.Sanui, “Proton-conducting polymer electrolyte membranes
based on hydrocarbon polymers,” Prog. Polym. Sci., vol. 25, no. 10, pp. 1463–
1502, 2000.
[8] J. K.Lee, W.Li, andA.Manthiram, “Poly(arylene ether sulfone)s containing
pendant sulfonic acid groups as membrane materials for direct methanol fuel
cells,” J. Memb. Sci., vol. 330, no. 1–2, pp. 73–79, 2009.
[9] Y. T.Hong, C. H.Lee, H. S.Park, K. A.Min, H. J.Kim, S. Y.Nam, andY. M.Lee,
“Improvement of electrochemical performances of sulfonated poly(arylene ether
sulfone) via incorporation of sulfonated poly(arylene ether benzimidazole),” J.
Power Sources, vol. 175, no. 2, pp. 724–731, 2008.
[10] C. C.Yang, W. C.Chien, andY. J.Li, “Direct methanol fuel cell based on
poly(vinyl alcohol)/titanium oxide nanotubes/poly(styrene sulfonic acid)
(PVA/nt-TiO2/PSSA) composite polymer membrane,” J. Power Sources, vol.
195, no. 11, pp. 3407–3415, 2010.
[11] S.Mallakpour, M.Zhiani, A.Barati, andH.Rostami, “Improving the direct
methanol fuel cell performance with poly(vinyl alcohol)/titanium dioxide
nanocomposites as a novel electrolyte additive,” Int. J. Hydrogen Energy, vol.
38, no. 28, pp. 12418–12426, 2013.
[12] J.Pandey, F. Q.Mir, andA.Shukla, “Synthesis of silica immobilized
phosphotungstic acid (Si-PWA)-poly(vinyl alcohol) (PVA) composite ionexchange
membrane for direct methanol fuel cell,” Int. J. Hydrogen Energy, vol.
39, no. 17, pp. 9473–9481, 2014.
[13] R.Bouchet, S.Miller, M.Duclot, andJ. L.Souquet, “A thermodynamic approach
to proton conductivity in acid-doped polybenzimidazole,” Solid State Ionics, vol.
145, no. 1–4, pp. 69–78, 2001.
[14] D.Wu, T.Xu, L.Wu, andY.Wu, “Hybrid acid-base polymer membranes prepared
for application in fuel cells,” J. Power Sources, vol. 186, no. 2, pp. 286–292,
2009.
[15] Y. F.Liang, H. Y.Pan, X. L.Zhu, Y. X.Zhang, andX. G.Jian, “Studies on
synthesis and property of novel acid-base proton exchange membranes,”
Chinese Chem. Lett., vol. 18, no. 5, pp. 609–612, 2007.
[16] B.Smitha, S.Sridhar, andA. A.Khan, “Solid polymer electrolyte membranes for
fuel cell applications - A review,” J. Memb. Sci., vol. 259, no. 1–2, pp. 10–26,
2005.
[17] N.Viet, C.Minh, M.Nogami, andM.Ohtaki, “Novel Pt and Pd Based Core-Shell
Catalysts with Critical New Issues of Heat Treatment, Stability and Durability
for Proton Exchange Membrane Fuel Cells and Direct Methanol Fuel Cells,”
Heat Treat. - Conv. Nov. Appl., 2012.
[18] M. A.Hickner andB. S.Pivovar, “The chemical and structural nature of proton
exchange membrane fuel cell properties,” Fuel Cells, vol. 5, no. 2, pp. 213–229,
2005.
[19] J. M.Raimond, M.Brune, Q.Computation, F.DeMartini, C.Monroe, D.
L.Moehring, P. L.Knight, M. B.Plenio, V.Vedral, E. S.Polzik, C.Variables, S.
L.Braunstein, A. K.Pati, M. D.Lukin, I. J.Cirac, P.Zoller, C.Han, P.Xue, G.
C.Guo, S.VPolyakov, A.Kuzmich, H. J.Kimble, J. I.Cirac, T. A. B.Kennedy,
P.Horodecki, R.Horodecki, D. P.Divincenzo, J. A.Smolin, A.Beige, L. C.Kwek,
P.Kok, J. A.Sauer, L.You, A.Zangwill, M. S.Chapman, andM.Nielsen, “Electric
Field Effect in Atomically Thin Carbon Films,” Science (80-. )., pp. 20–23.
[20] and K. S. N.Geim, Andre K., “The rise of graphene,” pp. 183–191.
[21] S.Iijima, “Helical microtubules of graphitic carbon.,” Nature, vol. 354, pp. 56–
58, 1991.
[22] J. H.Chen, C.Jang, S.Xiao, M.Ishigami, andM. S.Fuhrer, “Intrinsic and extrinsic
performance limits of graphene devices on SiO2,” Nat. Nanotechnol., vol. 3, no.
4, pp. 206–209, 2008.
[23] H.He, J.Klinowski, M.Forster, andA.Lerf, “A new structural model for graphite
oxide,” Chem. Phys. Lett., vol. 287, no. April, pp. 53–56, 1998.
[24] A. aBalandin, S.Ghosh, W.Bao, I.Calizo, D.Teweldebrhan, F.Miao, andC.
N.Lau, “Superior Thermal Conductivity of Single-Layer Graphene 2008,” Nano
Lett., vol. 8, pp. 902–907, 2008.
[25] C.Lee, X.Wei, J. W.Kysar, andJ.Hone, “Measurement of the Elastic Properties
and Intrinsic Strength of Monolayer Graphene,” Science (80-. )., vol. 321, no.
July, pp. 385–388, 2008.
[26] J.Hass, W. adeHeer, andE. H.Conrad, “The growth and morphology of epitaxial
multilayer graphene,” J. Phys. Condens. Matter, vol. 20, no. 32, p. 323202, 2008.
[27] C. Y.Su, A. Y.Lu, Y.Xu, F. R.Chen, A. N.Khlobystov, andL. J.Li, “High-quality
thin graphene films from fast electrochemical exfoliation,” ACS Nano, vol. 5, no.
3, pp. 2332–2339, 2011.
[28] T.Nakajima andY.Matsuo, “Formation process and structure of graphite oxide,”
Carbon N. Y., vol. 32, no. 3, pp. 469–475, 1994.
[29] W. S.Hummers andR. E.Offeman, “Preparation of Graphitic Oxide,” J. Am.
Chem. Soc., vol. 80, no. 6, pp. 1339–1339, 1958.
[30] A.Weight, B. B. C.Brodie, C.Society, andN.Brunswick, “sisting of minute
transparent and brilliant plates . Analysis showed that this change was attended
with a gradual alteration of the constitution of the substance , but that ,” pp. 249–
259, 1859.
[31] S.Stankovich, R. D.Piner, X.Chen, N.Wu, S. T.Nguyen, andR. S.Ruoff, “Stable
aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated
graphite oxide in the presence of poly(sodium 4-styrenesulfonate),” J. Mater.
Chem., vol. 16, no. 2, pp. 155–158, 2006.
[32] B. S.Pivovar, Y. X.Wang, andE. L.Cussler, “Pervaporation membranes in direct
methanol fuel cells,” J. Memb. Sci., vol. 154, no. 2, pp. 155–162, 1999.
[33] J.Maiti, N.Kakati, S. H.Lee, S. H.Jee, B.Viswanathan, andY. S.Yoon, “Where
do poly(vinyl alcohol) based membranes stand in relation to Nafion® for direct
methanol fuel cell applications?,” J. Power Sources, vol. 216, pp. 48–66, 2012.
[34] J. W.Rhim, H. B.Park, C. S.Lee, J. H.Jun, D. S.Kim, andY. M.Lee, “Crosslinked
poly(vinyl alcohol) membranes containing sulfonic acid group: Proton and
methanol transport through membranes,” J. Memb. Sci., vol. 238, no. 1–2, pp.
143–151, 2004.
[35] C.Chanthad andJ.Wootthikanokkhan, “Effects of crosslinking time and amount
of sulfophthalic acid on properties of the sulfonated poly(vinyl alcohol)
membrane,” J. Appl. Polym. Sci., vol. 101, no. 3, pp. 1931–1936, 2006.
[36] C. W.Lin, Y. F.Huang, andA. M.Kannan, “Cross-linked poly(vinyl alcohol) and
poly(styrene sulfonic acid-co-maleic anhydride)-based semi-interpenetrating
network as proton-conducting membranes for direct methanol fuel cells,” J.
Power Sources, vol. 171, no. 2, pp. 340–347, 2007.
[37] C. W.Lin, Y. F.Huang, andA. M.Kannan, “Semi-interpenetrating network based
on cross-linked poly(vinyl alcohol) and poly(styrene sulfonic acid-co-maleic
anhydride) as proton exchange fuel cell membranes,” J. Power Sources, vol. 164,
no. 2, pp. 449–456, 2007.
[38] C. W.Lin andY. S.Lu, “Highly ordered graphene oxide paper laminated with a
Nafion membrane for direct methanol fuel cells,” J. Power Sources, vol. 237, pp.
187–194, 2013.
[39] Y.He, J.Wang, H.Zhang, T.Zhang, B.Zhang, S.Cao, andJ.Liu, “Polydopaminemodified
graphene oxide nanocomposite membrane for proton exchange
membrane fuel cell under anhydrous conditions,” J. Mater. Chem. A, vol. 2, no.
25, pp. 9548–9558, 2014.
[40] N.Agmon, “The Grotthuss mechanism,” Chem. Phys. Lett., vol. 244, no. 5–6, pp.
456–462, 1995.
[41] W. W.Klaus‐Dieter Kreuer , Albrecht Rabenau, “Vehicle Mechanism, A New
Model for the Interpretation of the Conductivity of Fast Proton Conductors,”
Angew. Chemie Int. Ed. English, vol. 21, no. 3, pp. 208–209, 1982.
[42] W. H. J.Hogarth, J. C.Diniz da Costa, andG. Q.Lu, “Solid acid membranes for
high temperature (¿ C) proton exchange membrane fuel cells,” J. Power Sources,
vol. 142, no. 1–2, pp. 223–237, 2005.
[43] V.Neburchilov, J.Martin, H.Wang, andJ.Zhang, “A review of polymer
electrolyte membranes for direct methanol fuel cells,” J. Power Sources, vol.
169, no. 2, pp. 221–238, 2007.
[44] S.Bose, T.Kuila, T. X. H.Nguyen, N. H.Kim, K.Lau, andJ. H.Lee, “Polymer
membranes for high temperature proton exchange membrane fuel cell: Recent advances
and challenges,” Prog. Polym. Sci., vol. 36, no. 6, pp. 813–843, 2011.
[45] C.Wang, D. W.Shin, S. Y.Lee, N. R.Kang, G. P.Robertson, Y. M.Lee, andM.
D.Guiver, “A clustered sulfonated poly(ether sulfone) based on a new fluorenebased
bisphenol monomer,” J. Mater. Chem., pp. 25093–25101, 2012.
[46] B.Bolto, T.Tran, M.Hoang, andZ.Xie, “Crosslinked poly(vinyl alcohol)
membranes,” Prog. Polym. Sci., vol. 34, no. 9, pp. 969–981, 2009.
[47] M.Krumova, “Effect of crosslinking on the mechanical and thermal properties
of poly(vinyl alcohol),” Polymer (Guildf)., vol. 41, no. 26, pp. 9265–9272, 2000.
[48] C. E.Tsai, C. W.Lin, andB. J.Hwang, “A novel crosslinking strategy for
preparing poly(vinyl alcohol)-based proton-conducting membranes with high
sulfonation,” J. Power Sources, vol. 195, no. 8, pp. 2166–2173, 2010.
[49] M. S.Kang, Y. J.Choi, andS. H.Moon, “Water-swollen cation-exchange
membranes prepared using poly(vinyl alcohol) (PVA)/poly(styrene sulfonic
acid-co-maleic acid) (PSSA-MA),” J. Memb. Sci., vol. 207, no. 2, pp. 157–170,
2002.
[50] M. S.Kang, S. H.Cho, S. H.Kim, Y. J.Choi, andS. H.Moon, “Electrodialytic
separation characteristics of large molecular organic acid in highly waterswollen
cation-exchange membranes,” J. Memb. Sci., vol. 222, no. 1–2, pp. 149–
161, 2003.
[51] M.-S.Kang, J. H.Kim, J.Won, S.-H.Moon, andY. S.Kang, “Highly charged
proton exchange membranes prepared by using water soluble polymer blends for
fuel cells,” J. Memb. Sci., vol. 247, no. 1–2, pp. 127–135, 2005.
[52] D. S.Kim, H.IlCho, D. H.Kim, B. S.Lee, B. S.Lee, S. W.Yoon, Y. S.Kim, G.
Y.Moon, H.Byun, andJ. W.Rhim, “Surface fluorinated poly(vinyl
alcohol)/poly(styrene sulfonic acid-co-maleic acid) membrane for polymer
electrolyte membrane fuel cells,” J. Memb. Sci., vol. 342, no. 1–2, pp. 138–144,
2009.
[53] A.Lerf, H.He, M.Forster, andJ.Klinowski, “Structure of Graphite Oxide
Revisited,” J. Phys. Chem. B, vol. 102, no. 23, pp. 4477–4482, 1998.
[54] Y. C.Cao, C.Xu, X.Wu, X.Wang, L.Xing, andK.Scott, “A poly (ethylene
oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel
cells,” J. Power Sources, vol. 196, no. 20, pp. 8377–8382, 2011.
[55] C. Y.Tseng, Y. S.Ye, M. Y.Cheng, K. Y.Kao, W. C.Shen, J.Rick, J. C.Chen,
andB. J.Hwang, “Sulfonated polyimide proton exchange membranes with
graphene oxide show improved proton conductivity, methanol crossover impedance
, and mechanical properties,” Adv. Energy Mater., vol. 1, no. 6, pp.
1220–1224, 2011.
[56] R.Kumar, C.Xu, andK.Scott, “Graphite oxide/Nafion composite membranes for
polymer electrolyte fuel cells,” RSC Adv., vol. 2, no. 23, p. 8777, 2012.
[57] G.Eda, G.Fanchini, andM.Chhowalla, “Large-area ultrathin films of reduced
graphene oxide as a transparent and flexible electronic material,” Nat.
Nanotechnol., vol. 3, no. 5, pp. 270–274, 2008.
[58] Z. C.H.Zarrin, D.Higgins, Y.Jun, “Functionalized Graphene Oxide
Nanocomposite Membrane for Low Humidity and High Temperature Proton
Exchange Membrane Fuel Cells,” J. Phys. Chem. C, vol. 115, p. 20774, 2011.
[59] S.Stankovich, R. D.Piner, S. T.Nguyen, andR. S.Ruoff, “Synthesis and
exfoliation of isocyanate-treated graphene oxide nanoplatelets,” Carbon N. Y.,
vol. 44, no. 15, pp. 3342–3347, 2006.
[60] D.-D.Zhang, S.-Z.Zu, andB.-H.Han, “Inorganic–organic hybrid porous
materials based on graphite oxide sheets,” Carbon N. Y., vol. 47, no. 13, pp.
2993–3000, 2009.
[61] U.Saha, R.Jaiswal, J. P.Singh, andT. H.Goswami, “Diisocyanate modified
graphene oxide network structure: Steric effect of diisocyanates on bimolecular
cross-linking degree,” J. Nanoparticle Res., vol. 16, no. 5, 2014.
[62] B.Ramezanzadeh, E.Ghasemi, M.Mahdavian, E.Changizi, andM.
H.Mohamadzadeh Moghadam, “Characterization of covalently-grafted
polyisocyanate chains onto graphene oxide for polyurethane composites with
improved mechanical properties,” Chem. Eng. J., vol. 281, pp. 869–883, 2015.
[63] C.Xue, J.Zou, Z.Sun, F.Wang, K.Han, andH.Zhu, “Graphite
oxide/functionalized graphene oxide and polybenzimidazole composite
membranes for high temperature proton exchange membrane fuel cells,” Int. J.
Hydrogen Energy, vol. 39, no. 15, pp. 7931–7939, 2014.
[64] P.Mukoma, B. R.Jooste, andH. C. M.Vosloo, “A comparison of methanol
permeability in Chitosan and Nafion 117 membranes at high to medium
methanol concentrations,” J. Memb. Sci., vol. 243, no. 1–2, pp. 293–299, 2004.
[65] J.Guerrero-Contreras andF.Caballero-Briones, “Graphene oxide powders with
different oxidation degree, prepared by synthesis variations of the Hummers
method,” Mater. Chem. Phys., vol. 153, pp. 209–220, 2015.
[66] F.Shao, L.Dong, H.Dong, Q.Zhang, M.Zhao, L.Yu, B.Pang, andY.Chen,
“Graphene oxide modified polyamide reverse osmosis membranes with enhanced
chlorine resistance,” J. Memb. Sci., vol. 525, no. May 2016, pp. 9–17,
2017.
[67] Q.Jing, W.Liu, Y.Pan, V.V.Silberschmidt, L.Li, andZ. L.Dong, “Chemical
functionalization of graphene oxide for improving mechanical and thermal
properties of polyurethane composites,” Mater. Des., vol. 85, pp. 808–814, 2015.
[68] P.Pokharel andD. S.Lee, “High performance polyurethane nanocomposite films
prepared from a masterbatch of graphene oxide in polyether polyol,” Chem. Eng.
J., vol. 253, pp. 356–365, 2014.
[69] A.Klechikov, J.Yu, D.Thomas, T.Sharifi, andA.VTalyzin, “Structure of
graphene oxide membranes in solvents and solutions.,” Nanoscale, vol. 7, no. 37,
pp. 15374–84, 2015.
[70] H. C.Schniepp, J. L.Li, M. J.McAllister, H.Sai, M.Herrera-Alonson, D.
H.Adamson, R. K.Prud’homme, R.Car, D. A.Seville, andI. A.Aksay,
“Functionalized single graphene sheets derived from splitting graphite oxide,” J.
Phys. Chem. B, vol. 110, no. 17, pp. 8535–8539, 2006.
[71] A. R. S.Santha Kumar, F.Piana, M.Mičušík, J.Pionteck, S.Banerjee, andB.Voit,
“Preparation of graphite derivatives by selective reduction of graphite oxide and
isocyanate functionalization,” Mater. Chem. Phys., pp. 1–9, 2016.
[72] D. S.Kim, H. B.Park, J. W.Rhim, andY. M.Lee, “Preparation and
characterization of crosslinked PVA/SiO2 hybrid membranes containing
sulfonic acid groups for direct methanol fuel cell applications,” J. Memb. Sci.,
vol. 240, no. 1–2, pp. 37–48, 2004.
[73] D. S.Kim, M. D.Guiver, S. Y.Nam, T.IlYun, M. Y.Seo, S. J.Kim, H. S.Hwang,
andJ. W.Rhim, “Preparation of ion exchange membranes for fuel cell based on
crosslinked poly(vinyl alcohol) with poly(styrene sulfonic acid-co-maleic acid),”
J. Memb. Sci., vol. 281, no. 1–2, pp. 156–162, 2006.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top