|
[1] G.Apanel andE.Johnson, “Direct methanol fuel cells - Ready to go commercial?,” Fuel Cells Bull., vol. 2004, no. 11, pp. 12–17, 2004. [2] S. J.Peighambardoust, S.Rowshanzamir, andM.Amjadi, Review of the proton exchange membranes for fuel cell applications, vol. 35, no. 17. Elsevier Ltd, 2010. [3] Y.Wei, L.Shen, Z.Wang, W. D.Yang, H.Zhu, andH.Liu, “A novel membrane for DMFC - Na2Ti3O7 nanotubes/Nafion?? composite membrane,” Int. J. Hydrogen Energy, vol. 36, no. 8, pp. 5088–5095, 2011. [4] L.Shen, Z.Sun, Y.Chu, J.Zou, andM. A.Deshusses, “Novel sulfonated Nafion®- based composite membranes with pillararene as selective artificial proton channels for application in direct methanol fuel cells,” Int. J. Hydrogen Energy, vol. 40, no. 38, pp. 13071–13079, 2015. [5] D. S.Kim, G. P.Robertson, M. D.Guiver, andY. M.Lee, “Synthesis of highly fluorinated poly(arylene ether)s copolymers for proton exchange membrane materials,” J. Memb. Sci., vol. 281, no. 1–2, pp. 111–120, 2006. [6] C.Bi, H.Zhang, S.Xiao, Y.Zhang, Z.Mai, andX.Li, “Grafted porous PTFE/partially fluorinated sulfonated poly(arylene ether ketone) composite membrane for PEMFC applications,” J. Memb. Sci., vol. 376, no. 1–2, pp. 170– 178, 2011. [7] M.Rikukawa andK.Sanui, “Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers,” Prog. Polym. Sci., vol. 25, no. 10, pp. 1463– 1502, 2000. [8] J. K.Lee, W.Li, andA.Manthiram, “Poly(arylene ether sulfone)s containing pendant sulfonic acid groups as membrane materials for direct methanol fuel cells,” J. Memb. Sci., vol. 330, no. 1–2, pp. 73–79, 2009. [9] Y. T.Hong, C. H.Lee, H. S.Park, K. A.Min, H. J.Kim, S. Y.Nam, andY. M.Lee, “Improvement of electrochemical performances of sulfonated poly(arylene ether sulfone) via incorporation of sulfonated poly(arylene ether benzimidazole),” J. Power Sources, vol. 175, no. 2, pp. 724–731, 2008. [10] C. C.Yang, W. C.Chien, andY. J.Li, “Direct methanol fuel cell based on poly(vinyl alcohol)/titanium oxide nanotubes/poly(styrene sulfonic acid) (PVA/nt-TiO2/PSSA) composite polymer membrane,” J. Power Sources, vol. 195, no. 11, pp. 3407–3415, 2010. [11] S.Mallakpour, M.Zhiani, A.Barati, andH.Rostami, “Improving the direct methanol fuel cell performance with poly(vinyl alcohol)/titanium dioxide nanocomposites as a novel electrolyte additive,” Int. J. Hydrogen Energy, vol. 38, no. 28, pp. 12418–12426, 2013. [12] J.Pandey, F. Q.Mir, andA.Shukla, “Synthesis of silica immobilized phosphotungstic acid (Si-PWA)-poly(vinyl alcohol) (PVA) composite ionexchange membrane for direct methanol fuel cell,” Int. J. Hydrogen Energy, vol. 39, no. 17, pp. 9473–9481, 2014. [13] R.Bouchet, S.Miller, M.Duclot, andJ. L.Souquet, “A thermodynamic approach to proton conductivity in acid-doped polybenzimidazole,” Solid State Ionics, vol. 145, no. 1–4, pp. 69–78, 2001. [14] D.Wu, T.Xu, L.Wu, andY.Wu, “Hybrid acid-base polymer membranes prepared for application in fuel cells,” J. Power Sources, vol. 186, no. 2, pp. 286–292, 2009. [15] Y. F.Liang, H. Y.Pan, X. L.Zhu, Y. X.Zhang, andX. G.Jian, “Studies on synthesis and property of novel acid-base proton exchange membranes,” Chinese Chem. Lett., vol. 18, no. 5, pp. 609–612, 2007. [16] B.Smitha, S.Sridhar, andA. A.Khan, “Solid polymer electrolyte membranes for fuel cell applications - A review,” J. Memb. Sci., vol. 259, no. 1–2, pp. 10–26, 2005. [17] N.Viet, C.Minh, M.Nogami, andM.Ohtaki, “Novel Pt and Pd Based Core-Shell Catalysts with Critical New Issues of Heat Treatment, Stability and Durability for Proton Exchange Membrane Fuel Cells and Direct Methanol Fuel Cells,” Heat Treat. - Conv. Nov. Appl., 2012. [18] M. A.Hickner andB. S.Pivovar, “The chemical and structural nature of proton exchange membrane fuel cell properties,” Fuel Cells, vol. 5, no. 2, pp. 213–229, 2005. [19] J. M.Raimond, M.Brune, Q.Computation, F.DeMartini, C.Monroe, D. L.Moehring, P. L.Knight, M. B.Plenio, V.Vedral, E. S.Polzik, C.Variables, S. L.Braunstein, A. K.Pati, M. D.Lukin, I. J.Cirac, P.Zoller, C.Han, P.Xue, G. C.Guo, S.VPolyakov, A.Kuzmich, H. J.Kimble, J. I.Cirac, T. A. B.Kennedy, P.Horodecki, R.Horodecki, D. P.Divincenzo, J. A.Smolin, A.Beige, L. C.Kwek, P.Kok, J. A.Sauer, L.You, A.Zangwill, M. S.Chapman, andM.Nielsen, “Electric Field Effect in Atomically Thin Carbon Films,” Science (80-. )., pp. 20–23. [20] and K. S. N.Geim, Andre K., “The rise of graphene,” pp. 183–191. [21] S.Iijima, “Helical microtubules of graphitic carbon.,” Nature, vol. 354, pp. 56– 58, 1991. [22] J. H.Chen, C.Jang, S.Xiao, M.Ishigami, andM. S.Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol., vol. 3, no. 4, pp. 206–209, 2008. [23] H.He, J.Klinowski, M.Forster, andA.Lerf, “A new structural model for graphite oxide,” Chem. Phys. Lett., vol. 287, no. April, pp. 53–56, 1998. [24] A. aBalandin, S.Ghosh, W.Bao, I.Calizo, D.Teweldebrhan, F.Miao, andC. N.Lau, “Superior Thermal Conductivity of Single-Layer Graphene 2008,” Nano Lett., vol. 8, pp. 902–907, 2008. [25] C.Lee, X.Wei, J. W.Kysar, andJ.Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene,” Science (80-. )., vol. 321, no. July, pp. 385–388, 2008. [26] J.Hass, W. adeHeer, andE. H.Conrad, “The growth and morphology of epitaxial multilayer graphene,” J. Phys. Condens. Matter, vol. 20, no. 32, p. 323202, 2008. [27] C. Y.Su, A. Y.Lu, Y.Xu, F. R.Chen, A. N.Khlobystov, andL. J.Li, “High-quality thin graphene films from fast electrochemical exfoliation,” ACS Nano, vol. 5, no. 3, pp. 2332–2339, 2011. [28] T.Nakajima andY.Matsuo, “Formation process and structure of graphite oxide,” Carbon N. Y., vol. 32, no. 3, pp. 469–475, 1994. [29] W. S.Hummers andR. E.Offeman, “Preparation of Graphitic Oxide,” J. Am. Chem. Soc., vol. 80, no. 6, pp. 1339–1339, 1958. [30] A.Weight, B. B. C.Brodie, C.Society, andN.Brunswick, “sisting of minute transparent and brilliant plates . Analysis showed that this change was attended with a gradual alteration of the constitution of the substance , but that ,” pp. 249– 259, 1859. [31] S.Stankovich, R. D.Piner, X.Chen, N.Wu, S. T.Nguyen, andR. S.Ruoff, “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate),” J. Mater. Chem., vol. 16, no. 2, pp. 155–158, 2006. [32] B. S.Pivovar, Y. X.Wang, andE. L.Cussler, “Pervaporation membranes in direct methanol fuel cells,” J. Memb. Sci., vol. 154, no. 2, pp. 155–162, 1999. [33] J.Maiti, N.Kakati, S. H.Lee, S. H.Jee, B.Viswanathan, andY. S.Yoon, “Where do poly(vinyl alcohol) based membranes stand in relation to Nafion® for direct methanol fuel cell applications?,” J. Power Sources, vol. 216, pp. 48–66, 2012. [34] J. W.Rhim, H. B.Park, C. S.Lee, J. H.Jun, D. S.Kim, andY. M.Lee, “Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: Proton and methanol transport through membranes,” J. Memb. Sci., vol. 238, no. 1–2, pp. 143–151, 2004. [35] C.Chanthad andJ.Wootthikanokkhan, “Effects of crosslinking time and amount of sulfophthalic acid on properties of the sulfonated poly(vinyl alcohol) membrane,” J. Appl. Polym. Sci., vol. 101, no. 3, pp. 1931–1936, 2006. [36] C. W.Lin, Y. F.Huang, andA. M.Kannan, “Cross-linked poly(vinyl alcohol) and poly(styrene sulfonic acid-co-maleic anhydride)-based semi-interpenetrating network as proton-conducting membranes for direct methanol fuel cells,” J. Power Sources, vol. 171, no. 2, pp. 340–347, 2007. [37] C. W.Lin, Y. F.Huang, andA. M.Kannan, “Semi-interpenetrating network based on cross-linked poly(vinyl alcohol) and poly(styrene sulfonic acid-co-maleic anhydride) as proton exchange fuel cell membranes,” J. Power Sources, vol. 164, no. 2, pp. 449–456, 2007. [38] C. W.Lin andY. S.Lu, “Highly ordered graphene oxide paper laminated with a Nafion membrane for direct methanol fuel cells,” J. Power Sources, vol. 237, pp. 187–194, 2013. [39] Y.He, J.Wang, H.Zhang, T.Zhang, B.Zhang, S.Cao, andJ.Liu, “Polydopaminemodified graphene oxide nanocomposite membrane for proton exchange membrane fuel cell under anhydrous conditions,” J. Mater. Chem. A, vol. 2, no. 25, pp. 9548–9558, 2014. [40] N.Agmon, “The Grotthuss mechanism,” Chem. Phys. Lett., vol. 244, no. 5–6, pp. 456–462, 1995. [41] W. W.Klaus‐Dieter Kreuer , Albrecht Rabenau, “Vehicle Mechanism, A New Model for the Interpretation of the Conductivity of Fast Proton Conductors,” Angew. Chemie Int. Ed. English, vol. 21, no. 3, pp. 208–209, 1982. [42] W. H. J.Hogarth, J. C.Diniz da Costa, andG. Q.Lu, “Solid acid membranes for high temperature (¿ C) proton exchange membrane fuel cells,” J. Power Sources, vol. 142, no. 1–2, pp. 223–237, 2005. [43] V.Neburchilov, J.Martin, H.Wang, andJ.Zhang, “A review of polymer electrolyte membranes for direct methanol fuel cells,” J. Power Sources, vol. 169, no. 2, pp. 221–238, 2007. [44] S.Bose, T.Kuila, T. X. H.Nguyen, N. H.Kim, K.Lau, andJ. H.Lee, “Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges,” Prog. Polym. Sci., vol. 36, no. 6, pp. 813–843, 2011. [45] C.Wang, D. W.Shin, S. Y.Lee, N. R.Kang, G. P.Robertson, Y. M.Lee, andM. D.Guiver, “A clustered sulfonated poly(ether sulfone) based on a new fluorenebased bisphenol monomer,” J. Mater. Chem., pp. 25093–25101, 2012. [46] B.Bolto, T.Tran, M.Hoang, andZ.Xie, “Crosslinked poly(vinyl alcohol) membranes,” Prog. Polym. Sci., vol. 34, no. 9, pp. 969–981, 2009. [47] M.Krumova, “Effect of crosslinking on the mechanical and thermal properties of poly(vinyl alcohol),” Polymer (Guildf)., vol. 41, no. 26, pp. 9265–9272, 2000. [48] C. E.Tsai, C. W.Lin, andB. J.Hwang, “A novel crosslinking strategy for preparing poly(vinyl alcohol)-based proton-conducting membranes with high sulfonation,” J. Power Sources, vol. 195, no. 8, pp. 2166–2173, 2010. [49] M. S.Kang, Y. J.Choi, andS. H.Moon, “Water-swollen cation-exchange membranes prepared using poly(vinyl alcohol) (PVA)/poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA),” J. Memb. Sci., vol. 207, no. 2, pp. 157–170, 2002. [50] M. S.Kang, S. H.Cho, S. H.Kim, Y. J.Choi, andS. H.Moon, “Electrodialytic separation characteristics of large molecular organic acid in highly waterswollen cation-exchange membranes,” J. Memb. Sci., vol. 222, no. 1–2, pp. 149– 161, 2003. [51] M.-S.Kang, J. H.Kim, J.Won, S.-H.Moon, andY. S.Kang, “Highly charged proton exchange membranes prepared by using water soluble polymer blends for fuel cells,” J. Memb. Sci., vol. 247, no. 1–2, pp. 127–135, 2005. [52] D. S.Kim, H.IlCho, D. H.Kim, B. S.Lee, B. S.Lee, S. W.Yoon, Y. S.Kim, G. Y.Moon, H.Byun, andJ. W.Rhim, “Surface fluorinated poly(vinyl alcohol)/poly(styrene sulfonic acid-co-maleic acid) membrane for polymer electrolyte membrane fuel cells,” J. Memb. Sci., vol. 342, no. 1–2, pp. 138–144, 2009. [53] A.Lerf, H.He, M.Forster, andJ.Klinowski, “Structure of Graphite Oxide Revisited,” J. Phys. Chem. B, vol. 102, no. 23, pp. 4477–4482, 1998. [54] Y. C.Cao, C.Xu, X.Wu, X.Wang, L.Xing, andK.Scott, “A poly (ethylene oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel cells,” J. Power Sources, vol. 196, no. 20, pp. 8377–8382, 2011. [55] C. Y.Tseng, Y. S.Ye, M. Y.Cheng, K. Y.Kao, W. C.Shen, J.Rick, J. C.Chen, andB. J.Hwang, “Sulfonated polyimide proton exchange membranes with graphene oxide show improved proton conductivity, methanol crossover impedance , and mechanical properties,” Adv. Energy Mater., vol. 1, no. 6, pp. 1220–1224, 2011. [56] R.Kumar, C.Xu, andK.Scott, “Graphite oxide/Nafion composite membranes for polymer electrolyte fuel cells,” RSC Adv., vol. 2, no. 23, p. 8777, 2012. [57] G.Eda, G.Fanchini, andM.Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat. Nanotechnol., vol. 3, no. 5, pp. 270–274, 2008. [58] Z. C.H.Zarrin, D.Higgins, Y.Jun, “Functionalized Graphene Oxide Nanocomposite Membrane for Low Humidity and High Temperature Proton Exchange Membrane Fuel Cells,” J. Phys. Chem. C, vol. 115, p. 20774, 2011. [59] S.Stankovich, R. D.Piner, S. T.Nguyen, andR. S.Ruoff, “Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets,” Carbon N. Y., vol. 44, no. 15, pp. 3342–3347, 2006. [60] D.-D.Zhang, S.-Z.Zu, andB.-H.Han, “Inorganic–organic hybrid porous materials based on graphite oxide sheets,” Carbon N. Y., vol. 47, no. 13, pp. 2993–3000, 2009. [61] U.Saha, R.Jaiswal, J. P.Singh, andT. H.Goswami, “Diisocyanate modified graphene oxide network structure: Steric effect of diisocyanates on bimolecular cross-linking degree,” J. Nanoparticle Res., vol. 16, no. 5, 2014. [62] B.Ramezanzadeh, E.Ghasemi, M.Mahdavian, E.Changizi, andM. H.Mohamadzadeh Moghadam, “Characterization of covalently-grafted polyisocyanate chains onto graphene oxide for polyurethane composites with improved mechanical properties,” Chem. Eng. J., vol. 281, pp. 869–883, 2015. [63] C.Xue, J.Zou, Z.Sun, F.Wang, K.Han, andH.Zhu, “Graphite oxide/functionalized graphene oxide and polybenzimidazole composite membranes for high temperature proton exchange membrane fuel cells,” Int. J. Hydrogen Energy, vol. 39, no. 15, pp. 7931–7939, 2014. [64] P.Mukoma, B. R.Jooste, andH. C. M.Vosloo, “A comparison of methanol permeability in Chitosan and Nafion 117 membranes at high to medium methanol concentrations,” J. Memb. Sci., vol. 243, no. 1–2, pp. 293–299, 2004. [65] J.Guerrero-Contreras andF.Caballero-Briones, “Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method,” Mater. Chem. Phys., vol. 153, pp. 209–220, 2015. [66] F.Shao, L.Dong, H.Dong, Q.Zhang, M.Zhao, L.Yu, B.Pang, andY.Chen, “Graphene oxide modified polyamide reverse osmosis membranes with enhanced chlorine resistance,” J. Memb. Sci., vol. 525, no. May 2016, pp. 9–17, 2017. [67] Q.Jing, W.Liu, Y.Pan, V.V.Silberschmidt, L.Li, andZ. L.Dong, “Chemical functionalization of graphene oxide for improving mechanical and thermal properties of polyurethane composites,” Mater. Des., vol. 85, pp. 808–814, 2015. [68] P.Pokharel andD. S.Lee, “High performance polyurethane nanocomposite films prepared from a masterbatch of graphene oxide in polyether polyol,” Chem. Eng. J., vol. 253, pp. 356–365, 2014. [69] A.Klechikov, J.Yu, D.Thomas, T.Sharifi, andA.VTalyzin, “Structure of graphene oxide membranes in solvents and solutions.,” Nanoscale, vol. 7, no. 37, pp. 15374–84, 2015. [70] H. C.Schniepp, J. L.Li, M. J.McAllister, H.Sai, M.Herrera-Alonson, D. H.Adamson, R. K.Prud’homme, R.Car, D. A.Seville, andI. A.Aksay, “Functionalized single graphene sheets derived from splitting graphite oxide,” J. Phys. Chem. B, vol. 110, no. 17, pp. 8535–8539, 2006. [71] A. R. S.Santha Kumar, F.Piana, M.Mičušík, J.Pionteck, S.Banerjee, andB.Voit, “Preparation of graphite derivatives by selective reduction of graphite oxide and isocyanate functionalization,” Mater. Chem. Phys., pp. 1–9, 2016. [72] D. S.Kim, H. B.Park, J. W.Rhim, andY. M.Lee, “Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications,” J. Memb. Sci., vol. 240, no. 1–2, pp. 37–48, 2004. [73] D. S.Kim, M. D.Guiver, S. Y.Nam, T.IlYun, M. Y.Seo, S. J.Kim, H. S.Hwang, andJ. W.Rhim, “Preparation of ion exchange membranes for fuel cell based on crosslinked poly(vinyl alcohol) with poly(styrene sulfonic acid-co-maleic acid),” J. Memb. Sci., vol. 281, no. 1–2, pp. 156–162, 2006.
|