跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.11) 您好!臺灣時間:2025/09/23 11:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃立宇
研究生(外文):HUANG, LI-YU
論文名稱:透過封裝膠調配螢光粉與覆蓋螢光玻璃片製作優異連續光譜之白光LED
論文名稱(外文):Fabricating Excellent Full-Spectrum of White LEDs by Doping Phosphor into Encapsulant and Covering Glass Phosphor Piece
指導教授:林俊良林俊良引用關係
指導教授(外文):LIN, CHUN-LIANG
口試委員:蘇炎坤高健智
口試委員(外文):SU, YAN-KUINKAO, CHIEN-CHIH
口試日期:2019-06-01
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:78
中文關鍵詞:發光二極體螢光膠螢光玻璃片連續光譜演色性
外文關鍵詞:Light-emitting diodePhosphor in SiliconePhosphor in GlassFull-SpectrumColor rendering index
ORCID或ResearchGate:orcid.org/0000-0003-1169-8275
相關次數:
  • 被引用被引用:0
  • 點閱點閱:293
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本研究以氮化銦鎵藍光LED (Light-emitting diode)激發封裝矽膠中調配螢光粉並覆蓋YAG (Yttrium Aluminium Garnet)螢光玻璃片(Phosphor in Glass:PiG)製作優異的可見光連續光譜白光LED。

實驗一:比較『傳統YAG螢光膠(Phosphor in Silicone:PiS)封裝』與『 YAG螢光玻璃片(PiG)直接貼於LED封裝表面』的白光LED光熱特性。結果PiG相比PiS的光輸出提升0.46%;在變電流測試條件下,PiG在750 mA的電流下達到最高的光輸出223.5 lm,相比PiS高出8%的光輸出。透過PiG相較PiS的封裝方式,接面溫度從159oC降低到137oC (下降14%),熱阻則從21.5oC/W降低至13.0oC/W (下降40%)。光品質分析,PiG的CIE色度座標偏差相比PiS的誤差值低(40顆樣品),PiG的CIE x, y誤差值分別為0.6%與1.6%內,PiS的誤差值分別為5.8%與8.4%;在演色性指數中發現,PiG的R1~R15以及Ra值相比PiS平均高出2.6%。結果可以得知,相較於PiS的封裝方式,PiG不管是在光特性或是熱特性都較於優異。

實驗二:結合PiS與PiG封裝,製作具有優異的可見光連續光譜的白光LED。封裝矽膠以三款螢光粉(青色螢光粉:495 nm、綠色螢光粉:515 nm以及紅色螢光粉:660 nm)的調配摻雜後結合YAG螢光玻璃片激發;經封裝後,在與藍光LED激發純封裝矽膠並覆蓋YAG螢光玻璃片相比,光譜的強度在480 nm到680 nm的波段都達到提升,發光頻譜呈現出非常平整的連續光譜;於演色性指數分析中發現,封裝矽膠的螢光粉在未摻雜時與摻雜後,R9(正紅色)從-9.7提升至73、R15(亞洲人膚色)從70.6提升至85.9、Ra從77.4提升至90.9;光輸出通量的分析中,從未摻雜螢光粉到螢光粉摻雜後,光輸出通量從152.2 lm下降至104.3 lm (下降31.5%),由於摻雜了三款螢光粉於封裝矽膠中,因此累積了更多的熱;為了提升發光品質,犧牲發光效率是無法避免的。

實驗三:比較『PiS封裝』與『PiS結合PiG封裝』的可見光連續光譜白光LED特性。本實驗將驗證實驗二所使用的YAG螢光玻璃片的必要性,因此以YAG螢光膠取代YAG螢光玻璃片製作連續光譜LED,分別以螢光粉混合封裝與螢光粉分層封裝。從螢光粉混合封裝中可以發現,光譜無法與實驗二所製作的連續光譜達到一致;於演色性指數分析中,在相較實驗二所製作的連續光譜LED,R9從73下降至35.8、Ra從90.9下降至85.5。在螢光粉分層封裝中,以兩層不同的螢光膠堆疊封裝探討,其中底層為實驗二於封裝膠中所摻雜的螢光粉比例,分別為青色3 wt%、綠色10 wt%以及紅色0.8 wt%,頂層為6 wt%的YAG螢光膠,底層與頂層的厚度比例分別為7:1、3:1以及1:1。結果發現在厚度比例為1:1中,光譜在500 nm到650 nm有達到連續光譜的效果,但光譜的面積在相對強度下相較於實驗二製作的連續光譜LED,面積比例相差了49%。在演色性指數的觀察下,相比實驗二所製作的連續光譜LED,R9從73下降至29.7、Ra從90.9下降至81.9。
In this thesis, a full-spectrum white LED (Light-emitting diode) was fabricated using InGaN blue LED excitation doping phosphor in the encapsulant and covering the phosphor in glass (PiG).

Experiment I: The photo-thermal characteristics of white LEDs with the "phosphor in silicone (PiS) package" and the "PiG directly covering on the surface of LED package" respectively are compared. The luminous flux of the white LED with the PiG package is increased by 0.46% compared to that of PiS. Under different operating currents, the white LED with PiG package has achieved the highest luminous flux of 223.5 lm at 750 mA which is higher than that with the PiS package by 8%. The junction temperature of the white LED with the PiG package compared with that of the PiS package is reduced from 159oC to 137oC (reduced by 14%) and the thermal resistance is reduced from 21.5oC/W to 13.0oC/W (reduced by 40%). The CIE chromaticity coordinate deviation of the white LED with the PiG package is lower than that of the PiS package, and there are 40 LEDs respectively. The deviation values of x chromaticity for the white LED with the PiG package and with the PiS package are 0.6% and 5.8%, respectively. The deviation values of y chromaticity for the white LED with the PiG package and with the PiS package are 1.6% and 8.4%, respectively. The average values of color rendering index (CRI) for the white LED with the PiG package is higher than that with the PiS package by 2.6%. Both of optical and thermal characteristics for the white LED with the PiG package is better than that with the PiS package.

Experiment II: A white LED with excellent visible light full-spectrum by combining the PiS and the PiG packages is fabricated. Three kinds of phosphor with lighting wavelength at cyan 495 nm, green 515 nm and red 660 nm were doped into silicone encapsulant for the white LED package and then combined with the PiG package. The uniformity of the spectral intensity at wavelength from 480 nm to 680 nm was improved for the white LED by combining the PiS and the PiG packages compared with that with the PiG package only. The values of CRI R9 (red), R15 (Asian complexion) and Ra for the white LED by combining the PiS and the PiG packages compared with that with the PiG package only were increased from -9.7, 70.6 and 77.4 to 73, 85.9 and 90.9, respectively. The luminous flux of the white LED by combining the PiS and the PiG packages compared with that with the PiG package only were decreased from 152.2 lm to 104.3 lm (reduced 31.5%) because of heat caused by phosphors doped in the silicone encapsulant. The light output quality of the white LED with combining the PiS and the PiG packages is improved by sacrificing the luminous efficiency.

Experiment III: The optical characteristics of white LEDs with the PiS only and combined the PiS and the PiG packages respectively are compared to verify the necessity of the PiG package as shown in Experiment 2 for a full-spectrum. Four kinds of phosphor with lighting wavelength at yellow 544 nm, cyan 495 nm, green 515 nm and red 660 nm were doped into silicone encapsulant for the white LED package. The light output spectrum of the white LED with four kinds of phosphor doped in silicone encapsulant is far from the full-spectrum shown in Experiment 2. The values of CRI R9, R15 and Ra for the white LED by the PiS package only compared with that with the full-spectrum LED in Experiment 2 were decreased from 73, 35.8 and 85.9 to 76.5, 90.9 and 85.5, respectively. The two-layer package of the white LED was encapsulated by two stack layers of phosphor colloid. The bottom layer of the phosphor colloid is doped with cyan 3 wt%, green 10 wt%, and red 0.8 wt% phosphors respectively in silicone as shown in Experiment 2, and the top layer of the phosphor colloid is doped 6 wt% YAG phosphor in silicone. Three thickness ratios of the bottom layer to the top layer of the phosphor colloid are 7:1, 3:1, and 1:1, respectively. Moreover, the normalized spectral distribution area of the white LED with two-layer package is reduced by 49% compared to that of the full-spectrum LED shown in Experiment 2. The values of CRI R9, R15 and Ra for the white LED by two-layer package compared with that of full-spectrum LED in Experiment 2 were decreased from 73, 29.7 and 85.9 to 74.6, 90.9 and 81.9, respectively.
中文摘要 I
Abstract III
誌 謝 VI
目錄 VII
表目錄 X
圖目錄 XI

第一章 緒論 1
1.1 LED介紹與應用 1
1.2 螢光玻璃片簡介 3
1.3 螢光玻璃片製程 3
1.4 螢光玻璃片材料特性 5

第二章 文獻回顧 6
2.1 螢光玻璃片 6
2.2 全光譜 11

第三章 實驗目的與規劃 18
3.1 研究目的 18
3.2 實驗規劃樹狀圖 19
3.3 封裝相關製程 20
3.3.1 固晶與熱固化製程 20
3.3.2 金線連接導通製程 21
3.3.3 封裝製程 21
3.4 量測機台簡介 22
3.4.1 積分球量測系統 22
3.4.2 光譜分析儀 22
3.4.3 接面溫度量測系統 22

第四章 比較藍光LED激發YAG螢光膠與YAG螢光波璃片之白光LED的光熱特性 24
4.1 實驗材料 24
4.2 實驗流程 26
4.3 實驗結果 27
4.3.1 發光頻譜與色溫的調配比較 27
4.3.2 光輸出通量量測分析 29
4.3.3 LED熱特性分析 31
4.3.4 LED光品質比較 32
4.4 小結 34

第五章 於封裝膠調配多款螢光粉與覆蓋螢光玻璃片製作優異連續光譜之白光LED 35
5.1 實驗材料 35
5.2 實驗流程 37
5.3 實驗結果 38
5.3.1 綠色螢光粉調配之光譜比較 38
5.3.2 綠色和青色螢光粉調配摻雜之光譜比較 40
5.3.3 綠色、青色和紅色螢光粉調配摻雜之光譜比較 42
5.3.4 光譜演進 44
5.3.5 光品質比較 45
5.3.6 光輸出通量分析 47
5.4 小結 48

第六章 透過PiS混合與分層封裝取代連續光譜LED的PiG,驗證PiG的重要性 49
6.1 實驗材料 49
6.2 實驗流程 51
6.3 實驗結果 52
6.3.1 螢光粉調配混合封裝 52
6.3.2 螢光粉調配分層封裝 54
6.3.3 光品質比較 56
6.4 小結 58

第七章 自製連續光譜LED與目前市售之連續光譜產品的光譜與演色性指數比較 60
7.1 與市場上連續光譜LED做比較 60
7.1.1 韓國S公司 60
7.1.2 中國A公司 61
7.1.3 中國B公司 65
7.2 小結 69

第八章 實驗重要結果 71

第九章 未來展望 74

參考文獻 76
[1] 林俊良,“發光二極體躍升光源節能效,” 能源教育資源總中心, 2019年
[2] L.G. Conn, “Evaluation of LEDs for Signal Lighting,” SPIE Proceedings, Vol. 4641, pp. 1-6, 2002.
[3] S. Eberle, L. Livschitz, and J. Raggio, “LED Rear Combination Lamps : Styling Robustness, Life, Packaging, Installation, and Opportunities for Intelligent Signal Lighting,” SPIE Proceedings, Vol. 5663, pp. 29-37, 2005.
[4] “點亮您的需求與心情–日顯重要的智慧與人因照明技術,” 材料世界網, 2018年
[5] Zacky Wu,“研究發現:這樣的LED能減少光對動植物的負面影響,” LEDinside, 2018年
[6] Annielin,“LED 照明不能只考慮色溫,小心成了反效果,” LEDinside, 2017年
[7] 高工LED網,“你Pick全光譜LED嗎?,” 每日頭條, 2018年
[8] Pin,“LED進入健康照明時代,未來將如何發展?,” LEDinside, 2018年
[9] “螢光玻璃片(Phosphor in Glass),” 昕達光電股份有限公司, 2017年
[10] “螢光材料最新應用與發展趨勢(一),” 材料世界網, 2012年
[11] “螢光材料最新應用與發展趨勢(二),” 材料世界網, 2012年
[12] “Cryphosphor™ single crystal phosphor,” Crytur, 2019年
[13] Rui Zhang, Hang Lin, Yunlong Yu, Daqin Chen, Ju Xu, Yuansheng Wang “A New‐Generation Color Converter for High‐Power White LED: Transparent Ce3+:YAG Phosphor‐in‐Glass,” LASER&PHOTONICS REVIEWS, Vol.8, pp.158-164, 2014
[14] Song Hua, Chunhua Lu, Guohong, Zhou, Xiaoxia Liu, Xianpeng Qin, Guanghui liu, Shiwei Wang, Zhongzi Xu “Transparent YAG:Ce Ceramics for WLEDs with High CRI:Ce3+ Concentration and Sample Thickness Effects,” Ceramics International, Vol.42, pp.6935-6941, 2016
[15] H. Lee, S. Kim, J. Heo, and W. J. Chung, “Phosphor-in-Glass with Nd-Doped Glass for a White LED with a Wide Color Gamut,” Opt. Lett., OL, vol. 43, pp. 627–630, 2018
[16] Y. Peng, Y. Mou, Y. Zhuo, H. Li, X. Wang, M. Chen, and X. Luo, “Preparation and Luminescent Performances of Thermally Stable Red-Emitting Phosphor-in-Glass for High-Power Lighting,” J. of Alloys and Compounds, Vol.768, pp.114-121, 2018
[17] I. E. O. Hinostroza, H. Desirena, J. Hernandez, J. Molina, I. Moreno and E. De la Rosa, “Eu3+‐Doped Glass as a Color Rendering Index Enhancer in Phosphor‐in‐Glass,” Journal of the American Ceramic Society, Vol.101, pp.1-7, 2018
[18] H. C. Yoon, K. Yoshihiro, H. Yoo, S. W. Lee, J. H. Oh and Y. R. Do , “Low-Yellowing Phosphor-in-Glass for High-Power Chip-on-board White LEDs by Optimizing a Low-Melting Sn-P-F-O Glass Matrix,” Scientific Reports, Vol. 8, Article number 7412, 2018
[19] Y. Peng, Y. Mou, Y. Zhuo, H. Li, X. Wang, M. Chen, and X. Luo, “Preparation and Luminescent Performances of Thermally Stable Red-Emitting Phosphor-in-Glass for High-Power Lighting,” J. of Alloys and Compounds, Vol.768, pp.114-121, 2018
[20] I. E. O. Hinostroza, H. Desirena, J. Hernandez, J. Molina, I. Moreno and E. De la Rosa, “Eu3+‐Doped Glass as a Color Rendering Index Enhancer in Phosphor‐in‐Glass,” Journal of the American Ceramic Society, Vol.101, pp.1-7, 2018
[21] H. C. Yoon, K. Yoshihiro, H. Yoo, S. W. Lee, J. H. Oh and Y. R. Do , “Low-Yellowing Phosphor-in-Glass for High-Power Chip-on-board White LEDs by Optimizing a Low-Melting Sn-P-F-O Glass Matrix,” Scientific Reports, Vol. 8, Article number 7412, 2018
[22] Seoul Semiconductor Co., U.S. Patent US7679281, 2008. [Light Emitting Device.]
[23] Xicato Co., 中華民國專利 I565913, 2013. [具有高現色性指數之高效率以發光二極體為基的照明模組]
[24] DiCon Fiberoptics Inc., U.S. Patent US9888537, 2015. [LED Illuminator Apparatus, Using Multiple Luminescent Materials Dispensed onto an Array of LEDs, for Improved Color Rendering, Color Mixing, and Color Temperature Control]
[25] Global Energy & Lighting Inc., U.S. Patent US9936649, 2016. [Grow Light Systems and Methods for Controlling the Same]
[26] US Secretary of Navy, U.S. Patent US9955546, 2016. [Automated Environmental Control of Color Temperature Using Full Spectrum Color Changing Light Emitting Diodes]
[27] Yongfu Liu, Xia Zhang, Zhendong Hao, Xiaojun Wang and Jiahua Zhang, “Tunable Full-Color-Emitting Ca3Sc2Si3O12:Ce3+, Mn2+ Phosphor via Charge Compensation and Energy Transfer,” Chemical Communications, vol. 47, pp. 10677–10679, 2011
[28] C. Yan, Z. Liu, W. Zhuang, R. Liu, X. Xing, Y. Liu, G. Chen, Y. Li, and X. Ma, “YScSi4N6C:Ce3+-A Broad Cyan-Emitting Phosphor To Weaken the Cyan Cavity in Full-Spectrum White Light-Emitting Diodes,” Vol.56, pp.11087-11095, 2017
[29] Z. Leng, R. Li, L. Li, D. Xue, D. Zhang, G. Li, X. Chen and Y. Zhang, “Preferential Neighboring Substitution-Triggered Full Visible Spectrum Emission in Single-Phased Ca10.5-xMgx(PO4)7:Eu2+ Phosphors for High Color-Rendering White LEDs,” ACS Appl Mater Interfaces, Vol.10, pp.33322-33334, 2018
[30] P. S. Dutta and K. M. Liotta, “Full Spectrum White LEDs of Any Color Temperature with Color Rendering Index Higher Than 90 Using a Single Broad-Band Phosphor,” ECS J. of Solid State Science and Technology, Vol.7, pp.R3194-R3198, 2018
[31] J. Li, J. Ding, Y. Cao, X. Zhou, B. Ma, Z. Zhao and Y. Wang, “Color-Tunable Phosphor [Mg1.25Si1.25Al2.5]O3N3:Eu2+- A New Modified Polymorph of AlON with Double Sites Related Luminescence and Low Thermal Quenching,” Applied Materiais & Interfaces, Vol.10, pp.37307-37315, 2018
[32] S. A. Khan, Z. Ha, W. W. Ji, N. Z. Khan, H. Abadikhah, L. Hao, X. Xu, S. Agathopoulos, Q. Bao, “Crystal-Site Engineering for Developing Tunable Green Light Emitting Ba9Lu2Si6O24:Eu2+ Phosphors for Efficient White LEDs,” Journal of Alloys and Compounds, Vol.767, pp.374-381, 2018
[33] W. Lü, H. Xu, M. Hao, H. Wang and X. Kang, “Tunable Full-Color Emitting Na2Ba6(Si2O7)(SiO4)2:Ce3+,Eu2+,Tb3+,Mn2+ Phosphor for UV White LEDs: Photoluminescence and Energy Transfer,” Journal of Alloys and Compounds, Vol.101, pp.2914-2920, 2018
[34] “Light Ports Integrating Sphere,” Light Ports, 2012年
[35] “Spectroscope,” Wikipedia, the free encyclopedia
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊