|
REFERENCE
[1]Kontostathis A., Galitsky L.M., Pottenger W.M., Roy S., Phelps D.J. (2004) A Survey of Emerging Trend Detection in Textual Data Mining. In: Berry M.W. (eds) Survey of Text Mining. Springer, New York, NY. [2]Allan, J. (2002). Introduction to Topic Detection and Tracking. In J.Allan (Ed.), Topic Detection and Tracking: Event-based Information Organization (pp. 1–16). Boston, MA: Springer US. [3]殷蜀梅(2008)。判斷新興研究趨勢的技術方法分析[Analysis of the Methods for Detecting Emerging Trend]。情報科學,26(4),536-540。 [4]Fujita, K., Kajikawa, Y., Mori, J., & Sakata, I. (2014). Detecting research fronts using different types of weighted citation networks. Journal of Engineering and Technology Management, 32, 129–146. [5]Morinaga, S., & Yamanishi, K. (2004). Tracking Dynamics of Topic Trends Using a Finite Mixture Model. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 811–816). New York, NY, USA: ACM. [6]Le, M.-H., Ho, T.-B., & Nakamori, Y. (2005). Detecting emerging trends from scientific corpora. International Journal of Knowledge and Systems Sciences, 2(2), 53–59. [7]He, Qi & Chen, Bi & Pei, Jian & Qiu, Baojun & Mitra, Prasenjit & Lee Giles, C. (2009). Detecting topic evolution in scientific literature: How can citations help?. International Conference on Information and Knowledge Management, Proceedings. 957-966. [8]Blei, D. M., Ng, A. Y., &Jordan, M. I. (2003). Latent Dirichlet Allocation. J. Mach. Learn. Res., 3, 993–1022. [9]Small, H., Boyack, K. W., & Klavans, R. (2014). Identifying emerging topics in science and technology. In Research Policy (Vol. 43, pp. 1450–1467). [10]Bolelli, L., Ertekin, Ş., & Giles, C. L. (2009). Topic and trend detection in text collections using latent dirichlet allocation. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 5478 LNCS, pp. 776–780). [11]Wang, X., & McCallum, A. (2006). Topics over Time: A Non-Markov Continuous-Time Model of Topical Trends. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD 06 (Vol. 72, p. 424). New York, New York, USA: ACM Press. [12]Pottenger, W. M., Kim, Y.-B., & Meling, D. D. (2001). HDDITM: Hierarchical Distributed Dynamic Indexing. In R. L.Grossman, C.Kamath, P.Kegelmeyer, V.Kumar, &R. R.Namburu (Eds.), Data Mining for Scientific and Engineering Applications (pp. 319–333). Boston, MA: Springer US. [13]Pottenger, W. M., &Yang, T.-H. (2001). Detecting emerging concepts in textual data mining. In M. W.Berry (Ed.), Computational Information Retrieval (pp. 89–105). Philadelphia, PA, USA: Society for Industrial and Applied Mathematics. [14]Kanagasabi, R., & Ah-Hwee, T. (2011). Topic Detection, Tracking and Trend Analysis Using Self-organizing Neural Networks. Advances in Knowledge Discovery and Data Mining, 102–107. [15]陳仕吉(2009)。科學研究前沿探測方法綜述[Survey of Approaches to Research Front Detection]。現代圖書情報技術,9,28-33。 [16]Shibata, N., Kajikawa, Y., Takeda, Y., &Matsushima, K. (2008). Detecting emerging research fronts based on topological measures in citation networks of scientific publications. Technovation, 28, 758–775. [17]Shibata, Naoki & Kajikawa, Yuya & Takeda, Yoshiyuki & Matsushima, Katsumori. (2009). Comparative Study on Methods of Detecting Research Fronts Using Different Types of Citation. JASIST. 60. 571-580. [18]Fujimagari, H., & Fujita, K. (2015). Regular Paper Detecting Research Fronts Using Neural Network Model for Weighted Citation Network Analysis. Journal of Information Processing, 23(6), 753–758. [19]Morrison, A., & Rao, A. (2017, September 12). Machine learning evolution (infographic). Retrieved November 26, 2018, from http://usblogs.pwc.com/emerging-technology/machine-learning-evolution-infographic/
|