跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.181) 您好!臺灣時間:2025/12/17 07:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃菀淨
研究生(外文):HUANG,WAN-JING
論文名稱:二氧化錫改質鉍鎢複合材料之光催化應用及表面特性分析
論文名稱(外文):Synthesis of SnO2 Modified Bi2WO6 and the Evaluation of Photocatalytic Activity
指導教授:吳忠信吳忠信引用關係
指導教授(外文):WU,CHUNG-HSIN
口試委員:賴進興吳忠信陳婉如
口試委員(外文):LAI,CHIN-HSINGWU,CHUNG-HSINCHEN,WAN-RU
口試日期:2016-04-29
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系博碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:94
中文關鍵詞:Bi2WO6SnO2光觸媒光催化
外文關鍵詞:Bi2WO6SnO2photocatalyticphotodegradation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:346
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究以溶劑熱法製備Bi2WO6奈米光觸媒,並加入二氧化錫(SnO2)進行改質,形成SnO2/Bi2WO6複合材料,以C.I. Reactive Red 2 (RR2)為有機污染物進行光催化降解實驗。
將合成的SnO2/Bi2WO6複合材料由X光繞射儀 (X-ray diffraction, XRD) 鑑定晶相、比表面積分析儀 (BET) 測量比表面積、描式電子顯微鏡 (Scanning electron microscope, SEM) 與穿透式電子顯微鏡 (Transmission electron microscope, TEM) 觀察觸媒表面形貌、傅立葉轉換紅外光譜 (Fourier transform infrared spectroscopy, FTIR)及電子能譜儀 (X-ray photoelectron spectrometer, XPS) 進行觸媒化學鍵結之分析與測定元素組成、紫外-可見光光譜儀(UV-Vis spectrophotometer)分析臨界吸收波長並計算觸媒能隙值、光激螢光分光光譜儀(Photoluminescence, PL)鑑定電子電洞重組率,最後以界達電位 (Zeta-potential) 測定觸媒表面電位。
XRD結果可知,改質前後之Bi2WO6,皆符合Bi2WO6標準圖譜晶相,且隨著SnO2比例增加,SnO2特徵峰越明顯,由BET測量發現隨SnO2含量增加,比表面積隨之下降,並以UV-Vis分析得知SnO2含量增加導致能隙由2.85 eV增加至2.97 eV,產生藍移現象,由PL測定經由SnO2改質Bi2WO6後,皆可有效抑制電子及電洞發生重組反應,以界達電位測量得知改質前Bi2WO6等電位點 (Zero point charge, ZPC)為pH = 2.2,經由SnO2改質後之ZPC皆有效提升,此時觸媒表面具有較多正電荷,染料容易被觸媒吸附,進而提高反應效率。
本研究在400 W 氙燈 (Xe lamp)照射下進行光催化反應,改質前其Bi2WO6反應60分鐘之RR2去除率為82.9%,由擬一階反應方程式計算,其反應常數為0.0258 min-1,經由SnO2改質之Bi2WO6,其最佳化為錫鎢莫耳比0.5 (Sn/W = 0.5),RR2去除率為94.6%,反應常數提升至0.0463 min-1,且從自由基實驗得知在光催化實驗中,電洞 (h+)為主要的反應物種,超氧自由基 (O2-•)為其次,而氫氧自由基 (HO•)在反應中含量最少。最後測試觸媒的再利用性,由實驗得知改質前Bi2WO6之第一次循環實驗效率為82.9%,第三次循環實驗效率為63.9%,效率下降了19.0%,而經由SnO2改質後之Bi2WO6觸媒,其第一次循環實驗效率為94.6%下降至第三次循環實驗效率為89.3%,僅下降5.3%,故改質後可以大幅提升其再利用性及穩定性。

This study prepared Bi2WO6 via the solvothermal method and modified Bi2WO6 by tin oxide (SnO2) doping to from SnO2/Bi2WO6. The photocatalytic activity of Bi2WO6 and SnO2/Bi2WO6 was determined by the photodegradation of C.I. Reactive Red 2 (RR2) under a 400 W Xe lamp irradiation.
The surface characteristics of prepared photocatalysts were determined by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy (UV-vis), zeta potential meter, Fourier-transform infrared spectrometer (FTIR), and photoluminescence spectrometer (PL). The results of XRD indicated that all of the diffraction peaks of prepared photocatalysts match the standard data of Bi2WO6. After the SnO2 doping, the intensity of SnO2 diffraction peak gradually increases with the increasing of SnO2 content. The specific surface area of Bi2WO6 decreased with the increase of added SnO2 does in solvothermal method. The UV-Vis spectra of SnO2/Bi2WO6 displayed a blue shift in the band gap transition. The results of PL indicated that SnO2 doping to form SnO2/Bi2WO6 decreased the recombination of photogenerated electrons and holes in Bi2WO6. The zero point charge (ZPC) of Bi2WO6 and SnO2/Bi2WO6 (at Sn/W = 0.5) was 2.2 and 3.4, respectively.
After 60 min reaction, the RR2 photodegradation efficiency of Bi2WO6 and SnO2/Bi2WO6 (at Sn/W = 0.5) was 82.9% and 94.6%, respectively; moreover, the RR2 photodegradation rate constants of Bi2WO6 and SnO2/Bi2WO6 (at Sn/W = 0.5) were 0.0258 and 0.0463 min-1, respectively. The results of active species trapping experiments revealed that photogenerated hole (h+) was the major active species in the photocatalytic process of Bi2WO6 and SnO2/Bi2WO6. The recycling runs of RR2 photodegradation over Bi2WO6 and SnO2/Bi2WO6 were performed to evaluate their photocatalytic stability. The RR2 photodegradation in Bi2WO6 and SnO2/Bi2WO6 (at Sn/W = 0.5) systems decreased from 82.9% to 63.9% and 94.6% to 89.3% after three recycling runs. The reusability and stability of SnO2/Bi2WO6 exceeded that of Bi2WO6.

摘要 I
ABSTRACT III
致謝 V
目錄 VI
表目錄 VIII
圖目錄 X
第一章緒論 1
1-1 研究動機 1
1-2研究目的與內容 2
第二章文獻回顧 3
2-1高級氧化程序 3
2-1-1光觸媒催化 4
2-2偶氮染料 5
2-3 Bi2WO6 8
2-4 Bi2WO6金屬氧化物改質 11
第三章實驗方法 14
3-1藥品及儀器 14
3-2實驗流程及操作變因 15
3-2-1 Bi2WO6摻雜SnO2改質 16
3-3光催化活性實驗 18
3-4樣品表面物性分析 23
第四章結果與討論 28
4-1實驗樣品圖 28
4-2表面特性分析 29
4-2-1晶相分析 (XRD) 29
4-2-3掃描式電子顯微鏡 (SEM) 32
4-2-4穿透式電子顯微鏡 (TEM) 39
4-2-5官能基鑑定分析 (FTIR) 42
4-2-6元素組成分析 (XPS) 44
4-2-7固相紫外-可見光譜儀 (UV-Vis Spectrophotometer) 50
4-2-8 PL光激發螢光光譜 (Photoluminescence Spectra) 51
4-2-9表面電性分析 (Zeta Potential) 52
4-3光催化反應探討 54
4-3-1直接光解 54
4-3-2 Bi2WO6及改質後之光降解比較 54
4-3-3觸媒劑量效應 57
4-3-4 RR2濃度效應 59
4-3-5 RR2之pH效應 60
4-3-6自由基捕捉實驗 62
4-3-7觸媒再利用實驗 64
4-3-8動力學模擬 66
4-3-9實際應用:太陽光降解實驗 69
第五章 結論與建議 72
5-1結論 72
5-2建議 73
參考文獻 74
Bai, S., Guo, W., Sun, J., Li, J., Tian, Y., Chen, A., Luo, R., Li, D., Synthesis of SnO2-CuO heterojunction using electrospinning and application in detecting of CO, Sensors and Actuators B: Chemical, 226, 96–103 (2016)

Bhattacharjee, A., Ahmaruzzaman, M., A green and novel approach for the synthesis of SnO2 nanoparticles and its exploitation as a catalyst in the degradation of methylene blue under solar radiation, Materials Letters, 145, 74–78 (2015)

Chen, L., Hua, H., Yang, Q., Hu, C., Visible-light photocatalytic activity of Ag2O coated Bi2WO6 hierarchical microspheres assembled by nanosheets, Applied Surface Science, 327, 62–67 (2015)

Chen, W., Sun, F., Zhu, Z., Min, Z., Li, W., Nanoporous SnO2 prepared by a photochemical strategy: Controlling of specific surface area and photocatalytic activity in degradation of dye pollutants, Microporous and Mesoporous Materials, 186, 65–72 (2014)

Chen, Y., Yang, S., Wang, K., Lou, L., Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7, Journal of Photochemistry and Photobiology A: Chemistry, 172, 47–54 (2005)

Creutz, C., Brunschwig, B. S., Sutin, N., Interfacial charge-transfer absorption: 3. application to semiconductor-molecule assemblies, The Journal of Physical Chemistry B, 110, 25181-25190 (2006)

Cui, Z., Zeng, D., Tang, T., Liu, J., Xie, C., Processing-structure-property relationships of Bi2WO6 nanostructures as visible-light-driven photocatalyst, Journal of Hazardous Materials, 183, 211–217 (2010)

Dai, S., Yao, Z., Synthesis of flower-like SnO2 single crystals and its enhanced photocatalytic activity, Applied Surface Science, 258, 5703–5706 (2012)

Duan, F., Zhang, Q., Shi, D., Chen, M., Enhanced visible light photocatalytic activity of Bi2WO6 via modification with polypyrrole, Applied Surface Science, 268, 129–135 (2013)

Fu, H., Zhang, L., Yao, W., Zhu, Y., Photocatalytic properties of nanosized Bi2WO6 catalysts synthesized via a hydrothermal process, Applied Catalysis B: Environmental, 66, 100–110 (2006)

Fu, H., Pan, C., Zhang, L., Zhu, Y., Synthesis, characterization and photocatalytic properties of nanosized Bi2WO6, PbWO4 and ZnWO4 catalysts, Materials Research Bulletin, 42, 696–706 (2007)

Fu, Y., Chang, C., Chen, P., Chu, X., Zhu, L., Enhanced photocatalytic performance of boron doped Bi2WO6 nanosheets under simulated solar light irradiation, Journal of Hazardous Materials, 254-255, 185–192 (2013)

Fujishima, A., Honda, K., Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37-38 (1972)

Ge, M., Liu, L., Sunlight-induced photocatalytic performance of Bi2WO6 hierarchical microspheres synthesized via a relatively green hydrothermal route, Materials Science in Semiconductor Processing, 25, 258–263 (2014)

Gui, M. S., Zhang, W. D., Chang, Y. Q., Yu, Y. X., One-step hydrothermal preparation strategy for nanostructured WO3/Bi2WO6 heterojunction with high visible light photocatalytic activity, Chemical Engineering Journal, 197, 283–288 (2012)

Gui, M. S., Zhang, W. D., Preparation and modification of hierarchical nanostructured Bi2WO6 with high visible light-induced photocatalytic activity, Nanotechnology, 22, 265601–265609 (2011)

Gui, M. S., Zhang, W. D., Su, Q. X., Chen, C. H., Preparation and visible light photocatalytic activity of Bi2O3/Bi2WO6 heterojunction photocatalysts, Journal of Solid State Chemistry, 184, 1977–1982 (2011)

Guo, Y., Zhang, G., Gan, H., Synthesis, characterization and visible light photocatalytic properties of Bi2WO6/rectorite composites, Journal of Colloid and Interface Science, 369, 323–329 (2012)

He, J., Wang, W., Long, F., Zou, Z., Fu, Z., Xu, Z., Hydrothermal synthesis of hierarchical rose-like Bi2WO6 microspheres with high photocatalytic activities under visible-light irradiation, Materials Science and Engineering B, 177, 967–974 (2012)

Hu, S. P., Xu, C. Y., Wang, W. S., Ma, F. X., Zhen, L., Synthesis of Bi2WO6 hierarchical structures constructed by porous nanoplates and their associated photocatalytic properties under visible light irradiation, Ceramics International, 40, 11689–11698 (2014)

Huang, M., Yu, J., Li, B., Deng, C., Wang, L., Wu, W., Dong, L., Zhang, F., Fan M., Intergrowth and coexistence effects of TiO2–SnO2 nanocomposite with excellent photocatalytic activity, Journal of Alloys and Compounds, 629, 55–61 (2015)

Issarapanacheewin, S., Wetchakun, K., Phanichphant, S., Kangwansupamonkon, W., Wetchakun, N., A novel CeO2/Bi2WO6 composite with highly enhanced photocatalytic activity, Materials Letters, 156, 28–31 (2015)

Ju, P., Wang, P., Li, B., Fan, H., Ai, S., Zhang, D., Wang, Y., A novel calcined Bi2WO6/BiVO4 heterojunction photocatalyst with highly enhanced photocatalytic activity, Chemical Engineering Journal, 236, 430–437 (2014)

Kumar, B. V., Prasad, M. D., Vithal, M., Enhanced visible light photocatalytic activity of Sn doped Bi2WO6 nanocrystals, Materials Letters, 152, 200–202. (2015)

Li, H., Cui, Y., Hong, W., High photocatalytic performance of BiOI/ Bi2WO6 toward toluene and Reactive Brilliant Red, Applied Surface Science, 264, 581–588 (2013)

Li, W., Yoon, D., Hwang, J., Chang, W., Kim, J., One-pot route to synthesize SnO2-Reduced graphene oxide composites and their enhanced electrochemical performance as anodes in lithium-ion batteries, Journal of Power Sources, 293, 1024-1031 (2015)

Li, Z. Q., Chen, X. T., Xue, Z. L., Microwave-assisted synthesis and photocatalytic properties of flower-like Bi2WO6 and Bi2O3- Bi2WO6 composite, Journal of Colloid and Interface Science, 394, 69–77 (2013)

Liu, L., Ding, L., Liu, Y., An, W., Lin, S., Liang, Y., Cui, W., Enhanced visible light photocatalytic activity by Cu2O-coupled flower-like Bi2WO6 structures, Applied Surface Science, 364, 505–515 (2016a)

Liu, X., Lu, Q., Liu, J., Electrospinning preparation of one-dimensional ZnO/ Bi2WO6 heterostructured sub-microbelts with excellent photocatalytic performance, Journal of Alloys and Compounds, 662, 598–606 (2016b)

Liu, Y., Tang, H., Lv, H., Zhang, P., Ding, Z., Li, S., Guang, J., Facile hydrothermal synthesis of TiO2/ Bi2WO6 hollow microsphere with enhanced visible-light photoactivity, Powder Technology, 283, 246–253 (2015)

Liu, Y., Wang, W., Fu, Z., Wang, H., Wang, Y., Zhang, J., Nest-like structures of Sr doped Bi2WO6: Synthesis and enhanced photocatalytic properties, Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 176, 1264–1270 (2011)

Lu, Y., Zhao, K., Zhao, Y., Zhu, S., Yuan, X., Huo, M., Zhang, Y., Qiu, Y., Bi2WO6/TiO2/Pt nanojunction system: A UV-vis light responsive photocatalyst with high photocatalytic performance, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 481, 252–260 (2015)

Min, Y. L., Zhang, K., Chen, Y. C., Zhang, Y. G., Enhanced photocatalytic performance of Bi2WO6 by graphene supporter as charge transfer channel, Separation and Purification Technology, 86, 98–105 (2012a)

Min, Y. L., Zhang, K., Chen, Y. C., Zhang, Y. G., Zhao, W., Synthesis of nanostructured ZnO/ Bi2WO6 heterojunction for photocatalysis application, Separation and Purification Technology, 92, 115–120 (2012b)

Murcia-López, S., Hidalgo, M. C., Navío, J. A., Photocatalytic activity of single and mixed nanosheet-like Bi2WO6 and TiO2 for Rhodamine B degradation under sunlike and visible illumination, Applied Catalysis A: General 423–424, 34–41 (2012)

Phuruangrat, A., Dumrongrojthanath, P., Ekthammathat, N., Thongtem, S., Thongtem, T., Hydrothermal synthesis, characterization, and visible light-driven photocatalytic properties of Bi2WO6 nanoplates, Journal of Nanomaterials, DOI: 10.1155/2014/138561 (2014)

Qu, Y., Wang, H., Chen, H., Han, M., Lin, Z., Synthesis, characterization and sensing properties of mesoporous C/SnO2 nanocomposite, Sensors and Actuators B: Chemical, 228, 595–604 (2016)

Shan, G., Fu, Y., Chu, X., Chang, C., Zhu, L., Highly active magnetic bismuth tungstate/magnetite composite under visible light irradiation in the presence of hydrogen peroxide, Journal of Colloid and Interface Science, 444, 123–131 (2015)

So, C. M., Cheng, M. Y., Yu, J. C., Wong, P. K., Degradation of azo dye Procion Red MX-5B by photocatalytic oxidation, Chemosphere, 46, 905–912 (2002)

Sriwichai, S., Ranwongsa, H., Wetchakun, K., Phanichphant, S., Wetchakun, N., Effect of iron loading on the photocatalytic performance of Bi2WO6 photocatalyst, Superlattices and Microstructures, 76, 362–375(2014)

Sun, Z., Guo, J., Zhu, S., Mao, L., Zhang, D., A high-performance Bi2WO6 – graphene photocatalyst for visible light-induced H2 and O2 generation, The Royal Society of Chemistry, 6, 2186–2193 (2014)

Tan, G., Huang, J., Zhang, L., Ren, H., Xia, A., An enhanced visible-light-driven photocatalyst: Conduction band control of Bi2WO6 crystallites by Cu ion modification, Ceramics International, 40, 11671–11679 (2014)

Tang, J., Zou, Z., Ye, J., Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation, Catalysis Letters, 92, 53–56 (2004)

Tang, P., Chen, H., Cao, F., One-step preparation of bismuth tungstate nanodisks with visible-light photocatalytic activity, Materials Letters, 68, 171–173 (2012)

Vallejo, M., Román, M. F. S., Ortiz, I., Irabien, A., Chemosphere Overview of the PCDD/Fs degradation potential and formation risk in the application of advanced oxidation processes ( AOPs ) to wastewater treatment, Chemosphere, 118, 44–56 (2015)

Villamagua, L., Stashans, A., Lee, P. M., Liu, Y. S., Liu, C. Y., Carini, M., Change in the electrical conductivity of SnO2 crystal from n-type to p-type conductivity, Chemical Physics, 452, 71–77 (2015)

Wang, C., Zhang, H., Li, F., Zhu, L., Degradation and mineralization of bisphenol a by mesoporous Bi2WO6 under simulated solar light irradiation, Environmental Science and Technology, 44, 6843–6848 (2010)

Wu, C. H., Comparison of azo dye degradation efficiency using UV/single semiconductor and UV/coupled semiconductor systems, Chemosphere, 57, 601–608 (2004)

Wu, Q. S., Cui, Y., Yang, L. M., Zhang, G. Y., Gao, D. Z., Facile in-situ photocatalysis of Ag/ Bi2WO6 heterostructure with obviously enhanced performance, Separation and Purification Technology, 142, 168–175 (2015)

Wu, Q. S., Feng, Y., Zhang, G. Y., Sun, Y. Q., Xu, Y. Y., Gao, D. Z., α-Fe2O3 modified Bi2WO6 flower-like mesostructures with enhanced photocatalytic performance, Materials Research Bulletin, 49, 440–447 (2014)

Xiao, J., Dong, W., Song, C., Yu, Y., Zhang, L., Li, C., Yin, Y., Nitrogen oxide gas-sensing characteristics of hierarchical Bi2WO6 microspheres prepared by a hydrothermal method, Materials Science in Semiconductor Processing, 40, 463–467 (2015)

Xiao, Q., Zhang, J., Xiao, C., Tan, X., Photocatalytic degradation of methylene blue over Co3O4/ Bi2WO6 composite under visible light irradiation, Catalysis Communications, 9, 1247–1253 (2008)

Xu, C., Wei, X., Ren, Z., Wang, Y., Xu, G., Shen, G., Han, G., Solvothermal preparation of Bi2WO6 nanocrystals with improved visible light photocatalytic activity, Materials Letters, 63, 2194–2197 (2009)

Xu, J., Wang, W., Gao, E., Ren, J., Wang, L., Bi2WO6/Cu0: A novel coupled system with enhanced photocatalytic activity by Fenton-like synergistic effect, Catalysis Communications, 12, 834–838 (2011)

Xu, X., Ge, Y., Wang, H., Li, B., Yu, L., Liang, Y., Chen, K., Wang, F., Sol-gel synthesis and enhanced photocatalytic activity of doped bismuth tungsten oxide composite, Materials Research Bulletin, 73, 385–393 (2016)

Yu, H., Liu, R., Wang, X., Wang, P., Yu, J., Enhanced visible-light photocatalytic activity of Bi2WO6 nanoparticles by Ag2O cocatalyst, Applied Catalysis B-Environmental, 111, 326–333 (2012)
Zhang, G., Lü, F., Li, M., Yang, J., Zhang, X., Huang, B., Synthesis of nanometer Bi2WO6 synthesized by sol-gel method and its visible-light photocatalytic activity for degradation of 4BS, Journal of Physics and Chemistry of Solids, 71, 579–582 (2010)

Zhang, X. B., Dong, W. Y., Yang, W., Decolorization efficiency and kinetics of typical reactive azo dye RR2 in the homogeneous Fe(II) catalyzed ozonation process, Chemical Engineering Journal, 233, 14–23 (2013)

Zhang, X. D., Dong, W. Y., Sun, F. Y., Yang, W., Dong, J., Zhang, X. B., Degradation efficiency and mechanism of azo dye RR2 by a novel ozone aerated internal micro-electrolysis filter, Journal of Hazardous Materials, 276, 77–87 (2014a)

Zhang, Y., Shao, C., Li, X., Lu, N., Zhang, M., Zhang, P., Zhang, X., Liu, Y., Controllable synthesis and enhanced visible photocatalytic degradation performances of Bi2WO6-carbon nanofibers heteroarchitectures, Journal of Sol-Gel Science and Technology, 70, 149–158 (2014b)

Zhang, Z., Wang, W., Gao, E., Shang, M., Xu, J., Enhanced photocatalytic activity of Bi2WO6 with oxygen vacancies by zirconium doping, Journal of Hazardous Materials, 196, 255–262 (2011)

許銘儒,(2015) 非金屬改質Bi2WO6之製備及光催化活性特性分析,國立高雄應用科技大學,碩士論文。

張泰鈞,(2015) 摻雜金屬離子提升鉍鎢複合材料在可見光下之光催化活性及表面特性研究,國立高雄應用科技大學,碩士論文。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊