|
Adelson, E., Anderson, C., Bergen, J., Burt, P., and Ogden, J. (1984). Pyramid methods in image processing. RCA Eng., 29(6):33–41.
Burt, P. and Adelson, E. (1983). The Laplacian pyramid as a compact image code. IEEE Transactions on Communications, 31(4):532–540.
Deering, R. and Kaiser, J. F. (2005). The use of a masking signal to improve empirical mode decomposition. In Proceedings. (ICASSP ’05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005., volume 4, pages iv/485–iv/488.
Garbe, C. S., Schimpf, U., and Jahne, B. (2004). A surface renewal model to analyze infrared image sequences of the ocean surface for the study of air-sea heat and gas exchange. J. Geophys. Res.-Oceans, 109(C8):1–18.
Handler, R. A., Savelyev, I., and Lindsey, M. (2012). Infrared imagery of streak formation in a breaking wave. Physics of Fluids, 24(12):121701.
Handler, R. A., Smith, G. B., and Leighton, R. I. (2001). The thermal structure of an air-water interface at low wind speeds. Tellus A, 53(2):233–244.
Hara, T., VanInwegen, E., Wendelbo, J., Garbe, C. S., Schimpf, U., Jahne, B., and Frew, N. (2007). Estimation of Air-Sea Gas and Heat Fluxes from Infrared Imagery Based on Near Surface Turbulence Models, pages 241–254. Springer Berlin Heidelberg, Berlin, Heidelberg.
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., and Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc., Ser. A(454):903–995.
Huang, N. E. and Wu, Z. (2008). A review on Hilbert-Huang transform method and its applications to geophysical studies. Rev. of Geophys., 46:1–23.
Jahne, B., Libner, P., Fischer, R., Billen, T., and Plate, E. J. (1989). Investigating the transfer processes across the free aqueous viscous boundary layer by the controlled flux method. Tellus B, 41B(2):177–195.
Jahne, B., Munnich, K. O., Bosinger, R., Dutzi, A., Huber, W., and Libner, P. (1987). On parameters influencing air-water gas exchange. J. Geophys. Res., 92(C2):1937–1949.
Jahne, B. and Riemer, K. S. (1990). Two-dimensional wave number spectra of small-scale water surface waves. J. Geophys. Res., 95:11531–11546.
Melville, W. K., Shear, R., and Veron, F. (1998). Laboratory measurements of the generation and evolution of Langmuir circulations. J. Fluid Mech., 364:31–58.
Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Trans. Sys., Man., Cyber., 9(1):62–66.
Saylor, J. R. and Handler, R. A. (1999). Capillary wave gas exchange in the presence of surfactants. Exp. Fluids, 27:332–338.
Schnieders, J. (2015). Analyzing the footprints of turbulence producing mechanisms at the free water surface. PhD thesis, University of Heidelberg, Germany.
Schnieders, J., Garbe, C. S., Peirson, W. L., Smith, G. B., and Zappa, C. J. (2013). Analyzing the footprints of near-surface aqueous turbulence: An image processing-based approach. J. Geophys. Res.-Oceans, 118:1272–1286.
Scott, N. V., Handler, R. A., and Smith, G. B. (2008). Wavelet analysis of the surface temperature field at an air-water interface subject to moderate wind stress. Int. J. Heat Fluid Flow, 29(4):1103–1112.
Smith, C. R. and Metzler, S. P. (1983). The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. J. Fluid Mech., 129:27–54.
Smith, G. B., Handler, R. A., and Scott, N. (2007). Observations of the structure of the surface temperature field at an air-water interface for stable and unstable cases. Transport at the Air Sea Interface-Measurements, Models and Parameterizations, edited by C. S. Garbe, R. A. Handler, and B. Jahne, Springer-Verlag, Heidelberg, pages 205–222.
Tsai, W.-T., Chen, S.-M., Lu, G.-H., and Garbe, C. S. (2013). Characteristics of interfacial signatures on a wind-driven gravity-capillary wave. J. Geophys. Res.-Oceans, 118:1715–1735.
Tsai, W.-T., Chen, S.-M., and Meong, C.-H. (2005). A numerical study on the evolution and structure of a stress-driven free-surface turbulent shear flow. J. Fluid Mech., 545:163–192.
Veron, F. and Melville, W. K. (2001). Experiments on the stability and transition of winddriven water surfaces. J. Fluid Mech., 446:25–65.
Wang, Z., Bovik, A., Sheikh, H., and Simoncelli, E. (2004). Image quality assessment: from error visibility to structural similaritys. IEEE Trans. Image Process., 13(4):600–612.
Wu, Z. and Huang, N. E. (2004). A study of the characteristics of white noise using the empirical mode decomposition method. Proc. R. Soc. London A8, 460:1597–1611.
Wu, Z. and Huang, N. E. (2009). Ensemble empirical mode decomposition: A noiseassisted data analysis method. Adv. Adapt. Data Anal., 1(1):1–41.
Wu, Z., Huang, N. E., and Chen, X. (2009). The multi-dimensional ensemble empirical mode decomposition method. Adv. Adapt. Data Anal., 1(3):339–372.
Yeh, J.-R., Shieh, J.-S., and Huang, N. E. (2010). Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method. Adv. Adapt. Data Anal., 02(02):135–156.
Zhang, X. (1995). Capillary-gravity and capillary waves generated in a wind wave tank: Observations and theories. J. Fluid Mech., 289:51–82.
|