跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/11 05:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴和謙
研究生(外文):LAI, HO-CHINE
論文名稱:(I)氧化鎵鋅薄膜表面電漿共振性質研究及 (II) 氮化鋁緩衝層對成長於矽基板上氮化鎵厚膜及氮化銦鎵/氮化鎵量子井影響
論文名稱(外文):(I) Investigation of surface plasmon resonance behaviors of GaxZn1-xO thin films and (II) influence of AlN buffer layers on GaN films and InGaN/GaN quantum wells grown on Si substrates
指導教授:鄭永楨
指導教授(外文):CHENG, YUNG-CHENG
口試委員:鄭永楨楊斯博林光儀
口試委員(外文):CHENG, YUNG-CHENGYANG, ZU-POLIN, KUANG-I
口試日期:2019-08-08
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:材料科學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:120
中文關鍵詞:氧化鎵鋅氮化鋁分子束磊晶金屬有機化學氣相沉積橢圓偏振光譜
外文關鍵詞:GaZnOAlNMolecular beam epitaxyMetalorganic chemical vapor depositionSpectroscopic ellipsometry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
論文研究分為兩部分,第一部份探討以分子束磊晶於藍寶石基板上成長具有表面電漿共振性質的氧化鎵鋅薄膜。三系列樣品對應不同成長條件即改變鎵成長源溫度、改變鋅成長源溫度及藍寶石基板成長溫度。研究結果顯示氧化鎵鋅薄膜的電子濃度皆能達到1020~1021 cm-3,X光繞射圖譜顯示氧化鎵鋅薄膜皆有沿著氧化鋅(002)擇優取向磊晶繞射。鎵摻雜濃度6.26 %、基板溫度為250 °C之樣品呈現最強的(002)繞射峰強度、高電子濃度8.18×1020 cm-3、高電子遷移率30.1 cm2/Vs、低的電阻率2.54×10-4 Ω-cm、較小薄膜應力、較好顯微光激螢光放射與薄膜結晶品質。除了霍爾效應量測薄膜電性,橢圓偏振光譜量測亦能提供具有電漿特性的半導體材料非接觸非破壞性的電特性量測分析。
第二部分研究探討氮化鋁緩衝層對氮化鎵薄膜及氮化銦鎵量子井成長於矽基板的影響。逐層遞減溫度由約1000至700 oC成長之多層氮化鋁緩衝層能有效改善氮化鎵薄膜裂痕產生與提升氮化鎵薄膜及氮化銦鎵量子井結晶品質及放光強度,透過雙光子激發掃描顯微鏡能由表面深入材料精確分析薄膜內部裂痕發生的位置。

There are two parts of investigations in this thesis. The first part is the study of plasmonic resonance of characteristics of GaxZn1-xO thin films grown on sapphire substrate with molecular beam epitaxy (MBE). Three series of samples are prepared for the variations of Ga and Zn effusion cell temperature and substrate temperature. The results exhibit that electron concentration of GaxZn1-xO thin films can reach 1020~1021 cm-3. Preferential orientation along (002) of X-ray diffraction (XRD) pattern is demonstrated in GaxZn1-xO thin films. For the GaxZn1-xO thin film with the x content of Ga 6.26 % and substrate temperature 250 °C, it shows the strongest peak intensity of (002), high electron concentration 8.18×1020 cm-3, high electron mobility 30.1 cm2/Vs, low electron resistivity 2.54×10-4 Ω-cm, lower strain of the film, and better micro-photoluminescence (micro-PL) and crystalline structure. Besides Hall effect measurements, spectroscopic ellipsometry (SE) provides an nondestructive and contactless method to obtain electrical properties of semiconductor material with plasmonic behaviors.
The second part of the researches is the influence of AlN buffer layers on GaN films and InGaN/GaN quantum wells grown on Si substrates. Graded decrease of growth temperature from 1000 to 700 oC in depositing multiple AlN buffer layers can effectively reduce the cracks of GaN and hence increase crystalline quality and PL intensity. Two-photon excitation microscopy could help in-depth analysis of formation of GaN thin films.

目錄
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖次 vi
表次 xi
第一章 緒論 1
1-1 氧化鎵鋅電漿材料 1
1-2 氮化鎵、氮化銦鎵、氮化鋁緩衝層與矽基板 7
1-3 研究動機 11
第二章 儀器介紹 12
2-1 金屬有機化學氣相沉積 12
2-2 分子束磊晶 14
2-3 X光繞射儀 16
2-4 微光激發螢光光譜 19
2-5 微拉曼散射光譜 21
2-6 原子力顯微鏡 23
2-7 橢圓偏振光譜儀 25
2-8 多光子激發掃描顯微鏡 31
2-9 霍爾效應 35
第三章 氧化鎵鋅電漿薄膜性質 38
3-1 樣品製備 38
3-2 結果與討論 39
3-2-1 X光繞射譜 40
3-2-2 微光致激發螢光光譜 45
3-2-3 微拉曼散射光譜 49
3-2-4 霍爾效應量測 56
3-2-5 橢圓偏振光譜 58
3-2-6 原子力顯微鏡 85
3-3 結論 89
第四章 矽基板上氮化鋁緩衝層對氮化(銦)鎵薄膜影響 90
4-1 樣品製備 90
4-2 結果與討論 93
4-2-1 D系列樣品 93
4-2-2 TG系列樣品 102
4-3 結論 111
第五章 總結 112
參考文獻 113


[1]V. Bhosle, J. T. Prater, Fan Yang, D. Burk, S. R. Forrest, “Gallium-doped zinc oxide films as transparent electrodes for organic solar cell applications”, J. Appl. Phys. 102, 023501 (2007)
[2]Z. F. Liu, F.K. Shan, Y. X. Li, B. C. Shin, Y. S. Yu, “Epitaxial growth and properties of Ga-doped ZnO films grown by pulsed laser deposition”, Journal of Crystal Growth 259, 130 (2003)
[3]D. C. Look, K. D. Leedy, D. L. Agresta, “Nondestructive quantitative mapping of impurities and point defects in thin films: Ga and VZn in ZnO:Ga”, Appl. Phys. Lett. 104, 242107 (2014)
[4]S. Zeng, K. T. Yong, I. Roy, X.Q. Dinh, X. Yu, F. Luan, “A Review on Functionalized Gold Nanoparticles for Biosensing Applications”, Plasmonics, 6, 491 (2011)
[5]A. Boltasseva, H. A. Atwater, ”Low-Loss Plasmonic Metamaterials”, Science 331, 6015 (2011)
[6]E. Lee, S. Kim, S. Heo, J. Lee, “Effects of Oxygen Plasma Post-treatment on the Structural, Electrical and Optical Properties of Ga-doped ZnO films”, J. Korean Phy. Soc 67, 10, 1767 (2015)
[7]H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, A. Piqué, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths”, Appl. Phys. Lett. 102, 171103 (2013)
[8]A. K. Srivastava, J. Kumar, “Effect of zinc addition and vacuum annealing time on the properties of spin-coated low-cost transparent conducting 1 at% Ga–ZnO thin films”, Sci. Technol. Adv. Mater. 14, 065002 (2013)

[9]J.L. Zhao, X.W. Sun, H. Ryu, Y.B. Moon, “Thermally stable transparent conducting and highly infrared reflective Ga-doped ZnO thin films by metal organic chemical vapor deposition”, Optical Materials 33, 6, 768 (2011)
[10]Y. F. Yao, T. P. Li, Y. C. Cheng, W. Y. Chang, C. G. Tu, C. C. Chen, Y. T. Wang, W. F. Tse, C. W. Liu, Y. Kuo, Y. W. Kiang, C. C. Yang, “Surface plasmon resonance behaviors of a highly Ga-doped ZnO nano-grating structure”, Optical Material Express 9, 4, 1826 (2019)
[11]S. Nakamura, “The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes”, Science 281, 956 (1998)
[12]C. H. Teng, L. Zhang, H. Deng, P. C. Ku, “Strain-induced red-green-blue wavelength tuning in InGaN quantum wells”, Appl. Phy. Lett. 108, 071104 (2016)
[13]Z. Wu, P. Chen, G. Yang, Z. Xu, F. Xu, F. Jiang, R. Zhang, Y. Zheng, “Morphology evolution and emission properties of InGaN/GaNmultiple quantum wells grown on GaN microfacets using crossoverstripe patterns by selective area epitaxy”, Appl. Surf. Sci. 331, 444 (2015)
[14]M. H. Kim, Y. G. Do, H. C. Kang, D. Y. Noh, S. J. Park, "Effects of step-graded Al x Ga 1−x N interlayer on properties of GaN grown on Si(111) using ultrahigh vacuum chemical vapor deposition", Appl. Phys. Lett. 79, 2713 (2001)
[15]H. Ishikawa, G. Y. Zhao, N. Nakada, Takashi Egawa, T. Jimbo, M. Umeno, “GaN on Si Substrate with AlGaN/AlN Intermediate Layer”, Jpn. J. Appl. Phys. 38, L492 (1999)
[16]S. Zamir, B. Meyler, J. Salzman, “Thermal microcrack distribution control in GaN layers on Si substrates by lateral confined epitaxy”, Appl. Phys. Lett. 78, 288 (2001)
[17]Y. Honda, Y. Kuroiwa, M. Yamaguchi, N. Sawaki, “Growth of GaN free from cracks on a (111)Si substrate by selective metalorganic vaporphase epitaxy”, Appl. Phys. Lett. 80, 222 (2002)
[18]A. Dadgar, J. Bläsing, A. Diez, A. Alam, M. Heuken, A. Krost, “Metalorganic Chemical Vapor Phase Epitaxy of Crack-Free GaN on Si (111) Exceeding 1 μm in Thickness”, Jpn. J. Appl. Phys. 39, L1183 (2000)
[19]E. Feltin, S. Dalmasso, P. de Mierry, B. Beaumont, H. Lahrèche, A. Bouillé, H. Haas, M. Leroux, P. Gibart, “Green InGaN Light-Emitting Diodes Grown on Silicon (111) by Metalorganic Vapor Phase Epitaxy”, Jpn. J. Appl. Phys. 40, 2, 7B, L738 (2001)
[20]Kai Cheng, M. Leys, S. Degroote, M. Germain, and G. Borghs, “High quality GaN grown on silicon(111) using a SixNy interlayer by metalorganic vapor phase epitaxy”, Appl. Phys. Lett. 92, 192111 (2008)
[21]R. Jothilingam, M.W. Koch, J.B. Posthill, G.W. Wicks, “A Study of Cracking in GaN Grown on Silicon by Molecular Beam Epitaxy”, J. Electron. Mater 30, 7, 821 (2001)
[22]T. Takeuchi. H. Arnano, K. Hirarnatsu, N. Sawaki I. Akasaki, "Growth of single crystalline GaN film on Si substrate using 3C-SiC as an intermediate layer", J. Crystal. Growth 115, 634 (1991)
[23]A. Strittmatter, A. Krost, M. Straßburg, V. Türck, D. Bimberg, J. Bläsing, J. Christen, "Low-pressure metal organic chemical vapor deposition of GaN on silicon(111) substrates using an AlAs nucleation layer", Appl. Phys. Lett. 74, 1242 (1999)
[24]Y. Nakada, I. Aksenov, H. Okumura, “GaN heteroepitaxial growth on silicon nitride buffer layers formed on Si (111) surfaces by plasma-assisted molecular beam epitaxy”, Appl. Phys. Lett. 73, 827 (1998)
[25]S. A. Nikishin, N. N. Faleev, V. G. Antipov, S. Francoeur, L. Grave de Peralta, G. A. Seryogin, H. Temkin, T. I. Prokofyeva, M. Holtz, S. N. G. Chu, “High quality GaN grown on Si(111) by gas source molecular beam epitaxy with ammonia”, Appl. Phys. Lett. 75, 2073 (1999)
[26]F. Semond, P. Lorenzini, N. Grandjean, J. Massies, “High-electron-mobility AlGaN/GaN heterostructures grown on Si(111) by molecularbeam epitaxy”, Appl. Phys. Lett. 78, 335 (2001)
[27]T. Tanikawa, K. Ohnishi1, M. Kanoh, T. Mukai, T. Matsuoka, “Three-dimensional imaging of threading dislocations in GaN crystals using two-photon excitation photoluminescence”, Appl. Phys. Express 11, 031004 (2018)
[28]X. Yu, M. Tanaka, K. Toyamaa, S. Terakawa, S. Ono, M. Sudo, K. Fukuda, Y. Makino, T. Hirata, “Evaluation of Ce3+: LiCaAlF6 single crystal by Multi-Photon Luminescence Measurement”, Optical Materials 86, 394 (2018)
[29]G. Bautista, C. M. Blanca, C. Saloma, “Tracking the emergence of defect in light emitting semiconductor diodes with two-photon excitation microscopy and spectral microthermography”, Appl. Opt. 46, 6, 855 (2007)
[30]莊信萬豐. Available: https://web.archive.org/web/20131103075508/http://pureguard.net/cm/Application_Wizard/MOCVD_Epitaxy.html
[31]Author C. J. Pinzone. Available: https://en.wikipedia.org/wiki/File:GenericMOCVD.jpg
[32]國家奈米元件實驗室奈米通訊 22, 1, 28 (2015)
[33]Aixtron, Deposition Technology for Beginners, “How MOCVD works” (2011)
[34]K. S.Sree Harsha, “Chapter 9 – Nucleation and Growth of Films”, Oxford Elsevier, 685-829 (2006)
[35]K. S.Sree Harsha, “Chapter 10 - Epitaxy”, Oxford Elsevier, 831-909 (2006)
[36]Nanostructures & nanomaterials synthesis, properties & applications. Imperial college press, 2004.
[37]F. Baiutti, G. Christiani, G. Logvenov, "Towards precise defect control in layered oxide structures by using oxide molecular beam epitaxy", Beilstein J. Nanotech. 5, 596 (2014)
[38]A. Einstein, “Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt”, Annalen der Physik (in German) 17, 6, 132 (1905)
[39]B. E. Warren, “X-ray Diffraction Courier” Corporation (1969)
[40]Friedrich W., Knipping P., von Laue M., "Interferenz-Erscheinungen bei Röntgenstrahlen", Sitzungsberichte der Mathematisch-Physikalischen Classe der Königlich-Bayerischen Akademie der Wissenschaften zu München, 303 (1912).
[41]許樹恩 and 吳泰伯, “X光繞射原理與材料結構分析”, 中國材料科學學會(2004)
[42]“X光繞射原理及其應用”, 工業材料雜誌, (1994)
[43]鄭信民and林麗娟, “X光繞射應用簡介”, 工業材料雜誌, 181, 100 (2002)
[44]Bruker, Available: https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/x-ray-diffraction/d2-phaser/overview.html
[45]Smekal, A., "Zur Quantentheorie der Dispersion", Die Naturwissenschaften, 11, 43, 873 (1923)
[46]D. J. Gardiner, “Practical Raman spectroscopy”, Springer (1989)
[47]K. Ismail, Fabrication and characterization of SERS substrates throug hphoto-depositionof Gold Nanoparticles (2015)
[48]“Introduction to Raman Spectroscopy”, B&W Tek, Available: http://bwtek.com/raman-introduction-to-raman-spectroscopy/
[49]“全部儀器列表 - UCKU, 成功大學-維奈米科技研究中心”, 成功大學, Available: http://cmnst.ncku.edu.tw/p/412-1006-13238.php?Lang=zh-tw
[50]Horiba. Available: http://www.horiba.com/scientific/products/raman-spectroscopy/raman-spectrometers/raman-microscopes/hr-evolution/labram-hr-evolution-17309/
[51]"Atomic Force Microscopy", New York: Oxford University Press (2010)
[52]李其紘, "原子力顯微鏡的基本介紹", 科學研習, 52-5, 18 (2013)
[53]國家奈米元件實驗室. Available: http://www.ndl.narl.org.tw/NdlUC/Intro-NM014.aspx
[54]P. Drude, “Ueber die Gesetze der Reflexion und Brechung des Lichtes an der Grenze absorbirender Krystalle”, Annalen der Physik (in German), 268, 12, 584 (1887)
[55]John Wiley & Sons, “Spectroscopic ellipsometry principles and applications” (2007)
[56]先鋒科技, Available: http://www.teo.com.tw/prodDetail.asp?id=198
[57]M. Goeppert-Mayer, “Über Elementarakte mit zwei Quantensprüngen”, Annals of Physics (in German), 9, 3, 273 (1931)
[58]W. Kaiser, C. Garrett, “Two-Photon Excitation in CaF2:Eu2+”, Phys. Rev. Lett., 7, 6, 229 (1961)
[59]W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy”, Science, 248, 4951, 73 (1990)
[60]P. Theer, M. T. Hasan, W. Denk, “Two-photon imaging to a depth of 1000 µm in living brains by use of a Ti:Al2O3 regenerative amplifier”, Optics Letters, 28, 12, 1022 (2003)
[61]Akira.pl Available: https://en.wikipedia.org/wiki/File: Diagram_of_a_two-photon_excitation_microscope_en.svg
[62]H. C. Chang, C. L. Tu, K. I. Lin, J. Pu, T. Takenobu, C.-N. Hsiao, C. H. Chen, “Synthesis of Large-area InSe Monolayers by Chemical Vapor Deposition”, Small, 14, 1802351 (2018)
[63]K. I. Lin, Y. H. Ho, S. B. Liu, J. J. Ciou, B. T. Huang, C. Chen, H. C. Chang, C. L. Tu, C. H. Chen, “Atom-Dependent Edge-Enhanced Second-Harmonic Generation on MoS2 Monolayers”, Nano Lett., 18, 793 (2018)
[64]C. Chien, “The Hall effect and its applications”, Springer Science & Business Media (2013)
[65]鼎昕科技, Available: http://www.toptical.com.tw/
[66]JCPD card : PDF # 79-2205
[67]T. P. Rao, M.C. Santhosh Kumar, S. A. Angayarkanni, M. Ashok "Effect of stress on optical band gap of ZnO thin films with substrate temperature by spray pyrolysis", J. Alloys. Compd., 485, 1-2, 413 (2009)
[68]W. Zhu, S. Kitamura, M. Boffelli, E. Marin, E. D. Gaspera, M. Sturaro, A. Martucci, G. Pezzotti, “Analysis of defect luminescence in Ga-doped ZnO nanoparticles”, Phys. Chem. Chem. Phys., 18, 14, 9586 (2016)
[69]S. Horzum, F. Iyikanat, R. T. Senger, C. Çelebi, M. Sbeta, A. Yildiz, Tülay Serin, “Monitoring the characteristic properties of Ga-doped ZnO by Raman spectroscopy and atomic scale calculations”, J. Mol. Struct., 1180, 505 (2019)
[70]M. Zolfaghari, “Propose for Raman mode position for Mn-doped ZnO nanoparticles”, Physica B: Condensed Matter, 555, 1 (2019)
[71]H. Fujiwara, M. Kondo, "Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3 :Sn studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption", Physical Review B, 71, 7, 075109 (2005)
[72]Y. S. You, S. W. Feng, H. C. Wang, J. Song, J. Han, “The effects of indium aggregation in InGaN/GaN single and multiple quantum wells grownonnitrogen-polar GaN templates by a pulsed metalorganic chemical vapor deposition”, J. Lumin., 182, 196 (2017)
[73]J. Tang, T. Liang, W. Shi, Q. Zhang, Y. Wang, J. Liu, J. Xiong, “The testing of stress-sensitivity in heteroepitaxy GaN/Si by Raman spectroscopy”, Appl. Surf. Sci., 257, 8846 (2011)
[74]C. Y. Chen, W. M. Chang, W. L. Chung, C. Hsieh, C. H. Liao, S. Y. Ting, K. Y. Chen, Y. W. Kiang, C. C. Yang, W. S. Su, Y. C. Cheng, “Crack-free GaN deposition on Si substrate with temperature-graded AlN buffer growth and the emission characteristics of overgrown InGaN/GaN quantum wells”, J. Cryst. Growth., 396, 1 (2014)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊