|
[1] P. Batude, C. Fenouillet-Beranger, L. Pasini, V. Lu, F. Deprat, L. Brunet, et al., "3DVLSI with CoolCube process: An alternative path to scaling," in VLSI Technology (VLSI Technology), 2015 Symposium on, 2015, pp. T48-T49. [2] M. M. Shulaker, T. F. Wu, A. Pal, L. Zhao, Y. Nishi, K. Saraswat, et al., "Monolithic 3D integration of logic and memory: Carbon nanotube FETs, resistive RAM, and silicon FETs," in Electron Devices Meeting (IEDM), 2014 IEEE International, 2014, pp. 27.4. 1-27.4. 4. [3] K. Usuda, Y. Kamata, Y. Kamimuta, T. Mori, M. Koike, and T. Tezuka, "High-performance tri-gate poly-Ge junction-less p-and n-MOSFETs fabricated by flash lamp annealing process," in Electron Devices Meeting (IEDM), 2014 IEEE International, 2014, pp. 16.6. 1-16.6. 4. [4] J.-H. Park, M. Tada, D. Kuzum, P. Kapur, H.-Y. Yu, H. P. Wong, et al., "Low temperature (≤ 380 C) and high performance Ge CMOS technology with novel source/drain by metal-induced dopants activation and high-k/metal gate stack for monolithic 3D integration," in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1-4. [5] C.-H. Shen, J.-M. Shieh, W.-H. Huang, T.-T. Wu, C.-F. Chen, M.-H. Kao, et al., "Heterogeneously integrated sub-40nm low-power epi-like Ge/Si monolithic 3D-IC with stacked SiGeC ambient light harvester," in Electron Devices Meeting (IEDM), 2014 IEEE International, 2014, pp. 3.6. 1-3.6. 4. [6] C.-C. Yang, S.-H. Chen, J.-M. Shieh, W.-H. Huang, T.-Y. Hsieh, C.-H. Shen, et al., "Record-high 121/62 μA/μm on-currents 3D stacked epi-like Si FETs with and without metal back gate," in Electron Devices Meeting (IEDM), 2013 IEEE International, 2013, pp. 29.6. 1-29.6. 4. [7] J. Lisoni, A. Arreghini, G. Congedo, M. Toledano-Luque, I. Toque-Tresonne, K. Huet, et al., "Laser thermal anneal of polysilicon channel to boost 3D memory performance," in VLSI Technology (VLSI-Technology): Digest of Technical Papers, 2014 Symposium on, 2014, pp. 1-2. [8] H.-T. Lue, P.-Y. Du, W.-C. Chen, T.-H. Yeh, K.-P. Chang, Y.-H. Hsiao, et al., "A novel dual-channel 3D NAND flash featuring both N-channel and P-channel NAND characteristics for bit-alterable Flash memory and a new opportunity in sensing the stored charge in the WL space," in Electron Devices Meeting (IEDM), 2013 IEEE International, 2013, pp. 3.7. 1-3.7. 4. [9] P. Batude, M. Vinet, B. Previtali, C. Tabone, C. Xu, J. Mazurier, et al., "Advances, challenges and opportunities in 3D CMOS sequential integration," in Electron Devices Meeting (IEDM), 2011 IEEE International, 2011, pp. 7.3. 1-7.3. 4. [10] B. Rajendran, R. S. Shenoy, D. J. Witte, N. S. Chokshi, R. L. DeLeon, G. S. Tompa, et al., "Low thermal budget processing for sequential 3-D IC fabrication," Electron Devices, IEEE Transactions on, vol. 54, pp. 707-714, 2007. [11] J.-H. Park, M. Tada, D. Kuzum, P. Kapur, H.-Y. Yu, H. P. Wong, et al., "Low temperature (≤ 380 C) and high performance Ge CMOS technology with novel source/drain by metal-induced dopants activation and high-k/metal gate stack for monolithic 3D integration," in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1-4. [12] J. Derakhshandeh, N. Golshani, R. Ishihara, M. R. T. Mofrad, M. Robertson, T. Morrison, et al., "Monolithic 3-d integration of sram and image sensor using two layers of single-grain silicon," Electron Devices, IEEE Transactions on, vol. 58, pp. 3954-3961, 2011. [13] C.-C. Tsai, K.-F. Wei, Y.-J. Lee, H.-C. Chen, J.-L. Wang, I.-C. Lee, et al., "High-performance short-channel double-gate low-temperature polysilicon thin-film transistors using excimer laser crystallization," Electron Device Letters, IEEE, vol. 28, pp. 1010-1013, 2007. [14] S. Zhao, Z. Meng, W. Zhou, J. Ho, M. Wong, and H.-S. Kwok, "Bridged-grain polycrystalline silicon thin-film transistors," Electron Devices, IEEE Transactions on, vol. 60, pp. 1965-1970, 2013. [15] D. Murley, N. Young, M. Trainor, and D. McCulloch, "An investigation of laser annealed and metal-induced crystallized polycrystalline silicon thin-film transistors," Electron Devices, IEEE Transactions on, vol. 48, pp. 1145-1151, 2001. [16] Y. Sugawara, Y. Uraoka, H. Yano, T. Hatayama, T. Fuyuki, and A. Mimura, "Crystallization of double-layered silicon thin films by solid green laser annealing for high-performance thin-film transistors," Electron Device Letters, IEEE, vol. 28, pp. 395-397, 2007. [17] J. W. Mayer and S. S. Lau, Electronic materials science: for integrated circuits in Si and GaAs: Prentice Hall, 1990. [18] C. H. Poon, L. S. Tan, B. J. Cho, A. See, and M. Bhat, "Boron profile narrowing in laser-processed silicon after rapid thermal anneal," Journal of The Electrochemical Society, vol. 151, pp. G80-G83, 2004. [19] C. Ortolland, "Overview of anneal technology for advanced logic CMOS," in Junction Technology (IWJT), 2011 11th International Workshop on, 2011, pp. 116-121. [20] R. Sussmann, A. Harris, and R. Ogden, "Laser annealing of glow discharge amorphous silicon," Journal of Non-Crystalline Solids, vol. 35, pp. 249-254, 1980. [21] J. Kittl, A. Lauwers, O. Chamirian, M. Van Dal, A. Akheyar, M. De Potter, et al., "Ni-and Co-based silicides for advanced CMOS applications," Microelectronic Engineering, vol. 70, pp. 158-165, 2003. [22] H. Iwai, T. Ohguro, and S.-i. Ohmi, "NiSi salicide technology for scaled CMOS," Microelectronic Engineering, vol. 60, pp. 157-169, 2002. [23] J.-P. Colinge, FinFETs and other multi-gate transistors: Springer, 2008. [24] B. El-Kareh, Fundamentals of semiconductor processing technology: Springer Science & Business Media, 2012. [25] 凃政暉 and 謝嘉民, "微晶矽薄膜電晶體及記憶體元件," 2011. [26] B. E. Warren, X-ray Diffraction: Courier Corporation, 1969. [27] C. Droz, "Thin film microcrystalline silicon layers and solar cells," Université de Neuchâtel, 2003. [28] K. Iyengar, "Modeling Sub-Millisecond Laser Spike Annealing Processes," Cornell University, 2012. [29] S. Stathopoulos, A. Florakis, G. Tzortzis, T. Laspas, A. Triantafyllopoulos, Y. Spiegel, et al., "Laser Annealing for USJ Formation in Silicon: Comparison of Simulation and Experiment," Electron Devices, IEEE Transactions on, vol. 61, pp. 696-701, 2014.
|