跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 05:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳譽修
研究生(外文):Chen, Yu Hsiu
論文名稱:低熱預算遠紅外光雷射技術應用於可三維堆疊之多晶矽電晶體
論文名稱(外文):Application of Low Thermal Budget Far Infrared Ray Laser Technology on 3D Stackable Poly-Si FET
指導教授:吳孟奇楊智超楊智超引用關係
指導教授(外文):Wu, Meng ChyiYang, Chih Chao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:87
中文關鍵詞:低熱預算技術綠光奈秒雷射結晶遠紅外光雷射退火雷射輔助製作自我對準矽化物可三維堆疊電晶體
外文關鍵詞:low thermal budget technologygreen nanosecond laser crystallizationfar infrared ray laser anneallaser-assisted salicide3D stackable FETs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究提出低熱預算雷射技術製作高效能可三維堆疊之多晶矽電晶體,其中包含以綠光奈秒雷射製作高品質之多晶矽通道層,以遠紅外光雷射對離子佈植後之源/汲極進行熱退火,最後在低溫下以遠紅外光雷射輔助製作金屬矽化物於源/汲極上,提升元件特性。
利用綠光奈秒雷射可將電晶體之通道層由非晶矽轉換成多晶矽薄膜,經由化學機械研磨(CMP)技術,其平均晶粒尺寸約可大於700奈米,並且可有效降低其表面粗糙度,及去除表面晶粒較小的微結晶部分。另外,利用遠紅外光雷射對源/汲極進行熱退火,將載盤溫度加熱到370oC,分別對不同摻雜的矽薄膜進行活化測試,摻雜硼和磷的片電阻可降至小於100 Ohm/sq.,摻雜砷的介於100~200 Ohm/sq.,比起快速熱退火(RTA)皆有更好的活化效果,且具有較低之熱預算。由SIMS分析發現重量較輕的硼和磷在雷射活化後,相較於RTA更不會產生擴散的現象。此外,利用兩階段升溫技術製作矽化鎳,包含第一階段的RTA(250oC, 30秒),以及低溫情況的第二階段遠紅外光雷射,由此在表面形成NiSi薄層以降低接觸阻抗。此矽化物除了跟兩階段RTA製作之矽化物可達到相同的阻抗,也具有更低之熱預算。
我們將上述的實驗技術整合至多晶矽電晶體,得到驅動電流最高可達到285A/m (n型元件)及111A/m (p型元件),同時將在論文中討論不同元件尺寸對電性造成的影響。由上述雷射技術製作之多晶矽電晶體除了有較好的電特性,也因為具有較低熱預算,因此有利於發展三維堆疊元件。

In this thesis, we propose low thermal budget laser technologies to fabricate high-performance 3D stackable poly-Si FET, including green nanosecond laser used to produce high-quality poly-Si channel, far infrared ray laser used to anneal source / drain regions after ion implantation and form the metal silicide layer on the source / drain, thereby improves the device performance.
Green nanosecond laser is employed to transform the channel layer of the device from a-Si to poly-Si thin film. After chemical mechanical polishing (CMP) process, the average grain size is larger than 700nm, and the mean surface roughness can be lowered efficiently; moreover, the nc-Si on the surface can be polished. Far infrared ray (FIR) laser is utilized to anneal the source / drain regions. Silicon films with various doping species are activated by FIR laser after the substrate temperature is raised to 400oC, and the sheet resistances of sub-100Ω/□ for both B/P-doped Si and 100~200Ω/□ for As-doped Si can be realized. It significantly outperforms rapid thermal anneal (RTA) process and obsesses lower thermal budget. In addition, the dopant profiles of boron and phosphorus observed by SIMS analysis are less diffused than the data prepared by RTA process. Finally, we produce NiSi layer by two-step annealing processes, involving RTA (250oC, 30s) for the first step and FIR laser at low temperature for the second step. After that, NiSi layer which has low resistivity is formed on the surface and is used to lower the contact resistance. Silicide made from these ways has lower thermal budget and it can obtain equivalent resistance in comparison with two-step RTA processes.
We integrate the technologies mentioned above to the poly-Si FET, and the highest drive current can be reached to 285A/m for n-type and 111A/m for p-type respectively. The effect of different device sizes on the electrical characteristics will also be discussed in this thesis. The poly-Si FET fabricated from these methods not only has better electrical properties but also has lower thermal budget, thus it is beneficial to develop 3D sequential layered devices.

摘要 I
Abstract III
Acknowledgement V
Contents VII
Table Caption IX
Figure Caption X
Chapter 1 Introduction 1
1.1 Development of 3DIC 1
1.2 3DSI with low temperature fabrication process 2
1.3 Mechanism of Crystallization 4
1.3.1 Solid-Phase Crystallization (SPC) 4
1.3.2 Metal-Induced Crystallization (MIC) 5
1.3.3 Laser annealing crystallization 6
Chapter 2 Theory Description 8
2.1 Annealing process 8
2.1.1 Rapid Thermal Annealing (RTA) 9
2.1.2 Far infrared ray laser annealing (FIR-LA) 9
2.2 Self-aligned silicide (Salicide) 12
2.3 Tri-gate nanowire poly-Si FET 14
Chapter 3 Experimental apparatus and Device fabrication 16
3.1 Manufacturing Instrument Introduction 16
3.1.1 Horizontal Furnace 16
3.1.2 Green nanosecond Laser Spike Annealing System 17
3.1.3 Chemical mechanical polishing (CMP) 18
3.1.4 Electron-Beam (E-beam) Lithography 19
3.1.5 Dry etching machine - Lam2300 20
3.1.6 Atomic Layer Deposition System (ALD) 21
3.1.7 Multilayer metal sputtering system 23
3.1.8 Ion Implantation 24
3.1.9 Far Infrared Ray Laser Annealing System (FIR- LA) 25
3.1.10 High-density plasma chemical vapor deposition system (HDPCVD) 26
3.2 Material analysis 28
3.2.1 Raman Spectroscopy 28
3.2.2 X-ray diffraction (XRD) 29
3.2.3 Atomic Force Microscopy (AFM) 31
3.2.4 Secondary Ion Mass Spectroscopy Analysis (SIMS) 32
3.3 Fabrication of poly-Si FET 34
Chapter 4 39
4.1 Large-grained laser-crystallized poly-Si thin film 39
4.1.1 Chemical mechanical polishing for laser crystallized poly-Si thin film 41
4.1.2 Raman Spectra of laser-crystallized poly-Si thin film 43
4.2 Far-Infrared Ray Laser Annealing (FIR-LA) on large-grained Polycrystalline Si film 46
4.2.1 Non-melt FIR-LA 46
4.2.2 Effect of laser power 48
4.2.3 Effect of frequency 50
4.2.4 Effect of scan rate 55
4.2.5 Effect of duty cycle 56
4.2.6 Effect of the substrate temperature 59
4.2.7 FIR-LA vs RTA 61
4.3 FIR laser assisted NiSi film 63
4.3.1 Effect of FIR laser power on NiSi formation 65
4.3.2 Effect of FIR laser frequency on NiSi formation 66
4.3.3 FIR-LA vs RTA 67
4.4 Poly-Si MOSFET using low thermal budget laser processes 70
4.4.1 Id-Vg electrical characteristics of poly-Si FET prepared by FIR-LA and laser assisted NiSi 72
4.4.2 Effect of laser process on underlying poly-Si FET 80
Chapter 5 82
5.1 Conclusion 82
5.2 Future work 83
Reference 84

[1] P. Batude, C. Fenouillet-Beranger, L. Pasini, V. Lu, F. Deprat, L. Brunet, et al., "3DVLSI with CoolCube process: An alternative path to scaling," in VLSI Technology (VLSI Technology), 2015 Symposium on, 2015, pp. T48-T49.
[2] M. M. Shulaker, T. F. Wu, A. Pal, L. Zhao, Y. Nishi, K. Saraswat, et al., "Monolithic 3D integration of logic and memory: Carbon nanotube FETs, resistive RAM, and silicon FETs," in Electron Devices Meeting (IEDM), 2014 IEEE International, 2014, pp. 27.4. 1-27.4. 4.
[3] K. Usuda, Y. Kamata, Y. Kamimuta, T. Mori, M. Koike, and T. Tezuka, "High-performance tri-gate poly-Ge junction-less p-and n-MOSFETs fabricated by flash lamp annealing process," in Electron Devices Meeting (IEDM), 2014 IEEE International, 2014, pp. 16.6. 1-16.6. 4.
[4] J.-H. Park, M. Tada, D. Kuzum, P. Kapur, H.-Y. Yu, H. P. Wong, et al., "Low temperature (≤ 380 C) and high performance Ge CMOS technology with novel source/drain by metal-induced dopants activation and high-k/metal gate stack for monolithic 3D integration," in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1-4.
[5] C.-H. Shen, J.-M. Shieh, W.-H. Huang, T.-T. Wu, C.-F. Chen, M.-H. Kao, et al., "Heterogeneously integrated sub-40nm low-power epi-like Ge/Si monolithic 3D-IC with stacked SiGeC ambient light harvester," in Electron Devices Meeting (IEDM), 2014 IEEE International, 2014, pp. 3.6. 1-3.6. 4.
[6] C.-C. Yang, S.-H. Chen, J.-M. Shieh, W.-H. Huang, T.-Y. Hsieh, C.-H. Shen, et al., "Record-high 121/62 μA/μm on-currents 3D stacked epi-like Si FETs with and without metal back gate," in Electron Devices Meeting (IEDM), 2013 IEEE International, 2013, pp. 29.6. 1-29.6. 4.
[7] J. Lisoni, A. Arreghini, G. Congedo, M. Toledano-Luque, I. Toque-Tresonne, K. Huet, et al., "Laser thermal anneal of polysilicon channel to boost 3D memory performance," in VLSI Technology (VLSI-Technology): Digest of Technical Papers, 2014 Symposium on, 2014, pp. 1-2.
[8] H.-T. Lue, P.-Y. Du, W.-C. Chen, T.-H. Yeh, K.-P. Chang, Y.-H. Hsiao, et al., "A novel dual-channel 3D NAND flash featuring both N-channel and P-channel NAND characteristics for bit-alterable Flash memory and a new opportunity in sensing the stored charge in the WL space," in Electron Devices Meeting (IEDM), 2013 IEEE International, 2013, pp. 3.7. 1-3.7. 4.
[9] P. Batude, M. Vinet, B. Previtali, C. Tabone, C. Xu, J. Mazurier, et al., "Advances, challenges and opportunities in 3D CMOS sequential integration," in Electron Devices Meeting (IEDM), 2011 IEEE International, 2011, pp. 7.3. 1-7.3. 4.
[10] B. Rajendran, R. S. Shenoy, D. J. Witte, N. S. Chokshi, R. L. DeLeon, G. S. Tompa, et al., "Low thermal budget processing for sequential 3-D IC fabrication," Electron Devices, IEEE Transactions on, vol. 54, pp. 707-714, 2007.
[11] J.-H. Park, M. Tada, D. Kuzum, P. Kapur, H.-Y. Yu, H. P. Wong, et al., "Low temperature (≤ 380 C) and high performance Ge CMOS technology with novel source/drain by metal-induced dopants activation and high-k/metal gate stack for monolithic 3D integration," in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1-4.
[12] J. Derakhshandeh, N. Golshani, R. Ishihara, M. R. T. Mofrad, M. Robertson, T. Morrison, et al., "Monolithic 3-d integration of sram and image sensor using two layers of single-grain silicon," Electron Devices, IEEE Transactions on, vol. 58, pp. 3954-3961, 2011.
[13] C.-C. Tsai, K.-F. Wei, Y.-J. Lee, H.-C. Chen, J.-L. Wang, I.-C. Lee, et al., "High-performance short-channel double-gate low-temperature polysilicon thin-film transistors using excimer laser crystallization," Electron Device Letters, IEEE, vol. 28, pp. 1010-1013, 2007.
[14] S. Zhao, Z. Meng, W. Zhou, J. Ho, M. Wong, and H.-S. Kwok, "Bridged-grain polycrystalline silicon thin-film transistors," Electron Devices, IEEE Transactions on, vol. 60, pp. 1965-1970, 2013.
[15] D. Murley, N. Young, M. Trainor, and D. McCulloch, "An investigation of laser annealed and metal-induced crystallized polycrystalline silicon thin-film transistors," Electron Devices, IEEE Transactions on, vol. 48, pp. 1145-1151, 2001.
[16] Y. Sugawara, Y. Uraoka, H. Yano, T. Hatayama, T. Fuyuki, and A. Mimura, "Crystallization of double-layered silicon thin films by solid green laser annealing for high-performance thin-film transistors," Electron Device Letters, IEEE, vol. 28, pp. 395-397, 2007.
[17] J. W. Mayer and S. S. Lau, Electronic materials science: for integrated circuits in Si and GaAs: Prentice Hall, 1990.
[18] C. H. Poon, L. S. Tan, B. J. Cho, A. See, and M. Bhat, "Boron profile narrowing in laser-processed silicon after rapid thermal anneal," Journal of The Electrochemical Society, vol. 151, pp. G80-G83, 2004.
[19] C. Ortolland, "Overview of anneal technology for advanced logic CMOS," in Junction Technology (IWJT), 2011 11th International Workshop on, 2011, pp. 116-121.
[20] R. Sussmann, A. Harris, and R. Ogden, "Laser annealing of glow discharge amorphous silicon," Journal of Non-Crystalline Solids, vol. 35, pp. 249-254, 1980.
[21] J. Kittl, A. Lauwers, O. Chamirian, M. Van Dal, A. Akheyar, M. De Potter, et al., "Ni-and Co-based silicides for advanced CMOS applications," Microelectronic Engineering, vol. 70, pp. 158-165, 2003.
[22] H. Iwai, T. Ohguro, and S.-i. Ohmi, "NiSi salicide technology for scaled CMOS," Microelectronic Engineering, vol. 60, pp. 157-169, 2002.
[23] J.-P. Colinge, FinFETs and other multi-gate transistors: Springer, 2008.
[24] B. El-Kareh, Fundamentals of semiconductor processing technology: Springer Science & Business Media, 2012.
[25] 凃政暉 and 謝嘉民, "微晶矽薄膜電晶體及記憶體元件," 2011.
[26] B. E. Warren, X-ray Diffraction: Courier Corporation, 1969.
[27] C. Droz, "Thin film microcrystalline silicon layers and solar cells," Université de Neuchâtel, 2003.
[28] K. Iyengar, "Modeling Sub-Millisecond Laser Spike Annealing Processes," Cornell University, 2012.
[29] S. Stathopoulos, A. Florakis, G. Tzortzis, T. Laspas, A. Triantafyllopoulos, Y. Spiegel, et al., "Laser Annealing for USJ Formation in Silicon: Comparison of Simulation and Experiment," Electron Devices, IEEE Transactions on, vol. 61, pp. 696-701, 2014.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top