跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 07:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李偉豪
研究生(外文):Wei-HaoLi
論文名稱:以田口方法縮小TSV之尺寸
論文名稱(外文):Reducing TSV dimensions by Taguchi Method
指導教授:周榮華周榮華引用關係
指導教授(外文):Jung-Hua Chou
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:74
中文關鍵詞:矽穿孔壓阻效應排除區田口方法
外文關鍵詞:through silicon via (TSV)piezoresistive effectkeep-out-zone (KOZ)Taguchi method
相關次數:
  • 被引用被引用:3
  • 點閱點閱:438
  • 評分評分:
  • 下載下載:84
  • 收藏至我的研究室書目清單書目收藏:0
遵守摩爾定律驅使積體電路持續不斷提高電路密度;透過三維堆疊技術已是電子封裝之趨勢,其中利用矽穿孔(through silicon via, TSV)使得晶片間能垂直互連更為其關鍵技術。然而,TSV結構中多個材料間熱膨脹係數的差異,另外會造成不匹配問題,產生熱應力,從而發生TSV銅凸與脫層等結構問題,另外從過去的研究中,也發現熱應力對矽晶格有壓阻效應,影響載子移動速率和影響晶片之性能及可靠度。
本研究為了瞭解TSV在熱製程下之應力分布等情況,透過有限元素法對TSV進行模擬取得應力,並利用壓阻效應計算其對n-MOS與p-MOS之影響。藉改變TSV中結構之幾何尺寸,如TSV直徑、TSV深寬比、介電層厚度與TSV間距等,模擬TSV之應力,透過壓阻效應公式,計算並分析MOS於矽晶格方向[100]與[110]時,其載子移動率變化程度與觀察排除區(keep-out-zone, KOZ)所涉及之範圍。最後,利用田口分析方法對陣列式TSV進行優化設計,以減少排除區影響範圍,並使的晶片之體積尺寸大幅縮小。
Moore's Law drives the integrated circuit to continuously increase its circuit density for which 3D stacking technology is essential by the technology of through silicon via (TSV). TSV provides vertical interconnections between stacking dies. However, due to thermal stresses induced by the mismatch of coefficients of thermal expansion (CTE) between the related materials for TSV, structure reliability problems occur such as copper via pumping and interfacial delamination. Previous studies indicate that the induced thermal stress could lead to a piezoresistive effect on silicon which in turn causes undesirable carrier mobility in the device and affects the performance and reliability of the produced chip.
In this study, a finite element method was adopted to investigate the stress distribution of TSV under thermal process to examine possible piezoresistive effects TSV on the n-MOS and p-MOS structure by changing the geometry of the structure of TSV, including TSV diameter, TSV aspect ratio, dielectric layer thickness and TSV pitches. The piezoresistive effect of MOS in the silicon lattice directions [100] and [110] was studied for carrier mobility change to determine the range of keep-out zone (KOZ). Taguchi method was used to further optimize the array TSVs to reduce the KOZ range. The results show that the sizes of KOZ of the chip can be significantly reduced to increase the distribution density of TSV of the chip.
口試委員會審定書 #
摘要 i
EXTENDED ABSTRACT ii
誌謝 vi
目錄 vii
表目錄 x
圖目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 4
1.3 文獻回顧 5
1.4 論文架構 7
第二章 基礎技術與理論 8
2.1 TSV概述 8
2.1.1 TSV技術與結構 8
2.1.2 TSV製造製程概述 9
2.2 壓阻效應 11
2.2.1 單晶矽之壓阻效應原理[35] 11
2.2.2 單晶矽之壓阻效應值[36; 37] 13
2.3 分析軟體介紹 14
2.3.1 熱分析原理[38] 15
2.3.2 熱-結構耦合分析原理 16
2.4 田口方法介紹[39] 17
2.4.1 直交表 18
2.4.2 信號雜訊比 18
2.4.3 因子反應表與反應圖 19
2.4.4 變異分析 19
第三章 有限元素分析 22
3.1 有限元素模擬規劃 22
3.2 有限元素模擬設定[40] 23
3.2.1 定義TSV之材料性質 23
3.2.2 建立有限元素模型 24
3.2.3 切割網格 26
3.2.4 定義邊界條件 28
第四章 結果與討論 29
4.1 TSV結構之模擬分析 29
4.1.1 矽晶格材料性質模擬比較 29
4.1.2 排除區分析 33
4.2 第一階段模擬 35
4.2.1 一次一因子模擬選擇 35
4.2.2 一次一因子模擬結果 36
4.3 第二階段模擬 48
4.3.1 田口方法模擬設計 48
4.3.2 田口方法實驗結果 50
第五章 結論與建議 67
5.1 結論 67
5.2 建議 69
參考文獻 70
[1]J.-Q. Lu. 3-D hyperintegration and packaging technologies for micro-nano systems. Proceedings of the IEEE, 97(1), 18-30. (2009).
[2]F. P. Carson, Y. C. Kim, & I. S. Yoon. 3-D stacked package technology and trends. Proceedings of the IEEE, 97(1), 31-42. (2009).
[3]M. S. Bakir, & J. D. Meindl. Integrated interconnect technologies for 3D nanoelectronic systems: Artech House. (2008).
[4]J. U. Knickerbocker, P. S. Andry, B. Dang, R. R. Horton, M. J. Interrante, C. S. Patel, R. J. Polastre, K. Sakuma, R. Sirdeshmukh, & E. J. Sprogis. Three-dimensional silicon integration. IBM Journal of Research and Development, 52(6), 553-569. (2008).
[5]X. Zhang, R. Rajoo, C. S. Selvanayagam, C. S. Premachandran, W. K. Choi, S. W. Ho, S. C. Ong, L. Xie, D. Pinjala, & D.-L. Kwong. Low-stress bond pad design for low-temperature solder interconnections on through-silicon vias (TSVs). IEEE Transactions on Components, Packaging and Manufacturing Technology, 1(4), 510-518. (2011).
[6]C. S. Selvanayagam, J. H. Lau, X. Zhang, S. Seah, K. Vaidyanathan, & T. Chai. Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps. IEEE transactions on advanced packaging, 32(4), 720-728. (2009).
[7]L. Jiang, Y. Liu, L. Duan, Y. Xie, & Q. Xu. Modeling TSV open defects in 3D-stacked DRAM. Paper presented at the Test Conference (ITC), 2010 IEEE International. (2010).
[8]S. E. Thompson, G. Sun, Y. S. Choi, & T. Nishida. Uniaxial-process-induced strained-Si: Extending the CMOS roadmap. IEEE Transactions on Electron Devices, 53(5), 1010-1020. (2006).
[9]A. P. Karmarkar, X. Xu, & V. Moroz. Performanace and reliability analysis of 3D-integration structures employing through silicon via (TSV). Paper presented at the Reliability Physics Symposium, 2009 IEEE International. (2009).
[10]P. Dixit, S. Yaofeng, J. Miao, J. H. Pang, R. Chatterjee, & R. R. Tummala. Numerical and experimental investigation of thermomechanical deformation in high-aspect-ratio electroplated through-silicon vias. Journal of the Electrochemical Society, 155(12), H981-H986. (2008).
[11]N. Ranganathan, K. Prasad, N. Balasubramanian, & K. Pey. A study of thermo-mechanical stress and its impact on through-silicon vias. Journal of micromechanics and microengineering, 18(7), 075018. (2008).
[12]K. H. Lu, X. Zhang, S.-K. Ryu, J. Im, R. Huang, & P. S. Ho. Thermo-mechanical reliability of 3-D ICs containing through silicon vias. Paper presented at the Electronic Components and Technology Conference, 2009. ECTC 2009. 59th. (2009).
[13]L. J. Ladani. Numerical analysis of thermo-mechanical reliability of through silicon vias (TSVs) and solder interconnects in 3-dimensional integrated circuits. Microelectronic Engineering, 87(2), 208-215. (2010).
[14]K. Athikulwongse, A. Chakraborty, J.-S. Yang, D. Z. Pan, & S. K. Lim. Stress-driven 3D-IC placement with TSV keep-out zone and regularity study. Paper presented at the Proceedings of the International Conference on Computer-Aided Design. (2010).
[15]J.-S. Yang, K. Athikulwongse, Y.-J. Lee, S. K. Lim, & D. Z. Pan. TSV stress aware timing analysis with applications to 3D-IC layout optimization. Paper presented at the Proceedings of the 47th Design Automation Conference. (2010).
[16]W. Kwon, K. Teo, S. Gao, T. Ueda, T. Ishigaki, K. Kang, & W. Yoo. Stress evolution in surrounding silicon of Cu-filled through-silicon via undergoing thermal annealing by multiwavelength micro-Raman spectroscopy. Applied Physics Letters, 98(23), 232106. (2011).
[17]S.-K. Ryu, K.-H. Lu, X. Zhang, J.-H. Im, P. S. Ho, & R. Huang. Impact of near-surface thermal stresses on interfacial reliability of through-silicon vias for 3-D interconnects. IEEE Transactions on Device and Materials Reliability, 11(1), 35-43. (2011).
[18]X. Gao, R. Chen, C. Li, & S. Liu. Dimension optimization of through silicon via (TSV) through simulation and design of experiment (DOE). Paper presented at the Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), 2012 13th International Conference on. (2012).
[19]A. Heryanto, W. Putra, A. Trigg, S. Gao, W. Kwon, F. Che, X. Ang, J. Wei, R. I Made, & C. L. Gan. Effect of copper TSV annealing on via protrusion for TSV wafer fabrication. Journal of Electronic Materials, 1-10. (2012).
[20]S.-K. Ryu, K.-H. Lu, T. Jiang, J.-H. Im, R. Huang, & P. S. Ho. Effect of thermal stresses on carrier mobility and keep-out zone around through-silicon vias for 3-D integration. IEEE Transactions on Device and Materials Reliability, 12(2), 255-262. (2012).
[21]S.-K. Ryu, Q. Zhao, M. Hecker, H.-Y. Son, K.-Y. Byun, J. Im, P. S. Ho, & R. Huang. Micro-Raman spectroscopy and analysis of near-surface stresses in silicon around through-silicon vias for three-dimensional interconnects. Journal of Applied Physics, 111(6), 063513. (2012).
[22]C. Lee, T. Yang, C. Wu, K. Kao, C. Fang, C. Zhan, J. Lau, & T. Chen. Impact of high density TSVs on the assembly of 3D-ICs packaging. Microelectronic Engineering, 107, 101-106. (2013).
[23]J. Zhang, L. Zhang, Y. Dong, H. Li, C. M. Tan, G. Xia, & C. S. Tan. The dependency of TSV keep-out zone (KOZ) on Si crystal direction and liner material. Paper presented at the 3D Systems Integration Conference (3DIC), 2013 IEEE International. (2013).
[24]Y. Zhu, J. Zhang, H. Y. Li, C. S. Tan, & G. Xia. Study of near-surface stresses in silicon around through-silicon vias at elevated temperatures by Raman spectroscopy and simulations. IEEE Transactions on Device and Materials Reliability, 15(2), 142-148. (2015).
[25]H.-Y. Tsai, & C.-W. Kuo. Thermal stress and failure location analysis for through silicon via in 3D integration. Journal of Mechanics, 32(01), 47-53. (2016).
[26]X. Gagnard, & T. Mourier. Through silicon via: From the CMOS imager sensor wafer level package to the 3D integration. Microelectronic Engineering, 87(3), 470-476. (2010).
[27]C. Laviron, B. Dunne, V. Lapras, P. Galbiati, D. Henry, F. Toia, S. Moreau, R. Anciant, C. Brunet-Manquat, & N. Sillon. Via first approach optimisation for through silicon via applications. Paper presented at the Electronic Components and Technology Conference, 2009. ECTC 2009. 59th. (2009).
[28]A. Redolfi, D. Velenis, S. Thangaraju, P. Nolmans, P. Jaenen, M. Kostermans, U. Baier, E. Van Besien, H. Dekkers, & T. Witters. Implementation of an industry compliant, 5× 50μm, via-middle TSV technology on 300mm wafers. Paper presented at the Electronic Components and Technology Conference (ECTC), 2011 IEEE 61st. (2011).
[29]B. Majeed, D. S. Tezcan, B. Vandevelde, F. Duval, P. Soussan, & E. Beyne. Electrical characterization, modeling and reliability analysis of a via last TSV. Paper presented at the Electronics Packaging Technology Conference (EPTC), 2010 12th. (2010).
[30]T. Pandhumsoporn, L. Wang, M. Feldbaum, P. Gadgil, M. Puech, & P. Maquin. High-etch-rate deep anisotropic plasma etching of silicon for MEMS fabrication. Paper presented at the 5th Annual International Symposium on Smart Structures and Materials. (1998).
[31]L. Hofmann, R. Ecke, S. E. Schulz, & T. Gessner. Investigations regarding Through Silicon Via filling for 3D integration by Periodic Pulse Reverse plating with and without additives. Microelectronic Engineering, 88(5), 705-708. (2011).
[32]H. Ling, H. Cao, Y. Guo, H. Yu, M. Li, & D. Mao. Influence of leveler concentration on copper electrodeposition for through silicon via filling. Paper presented at the Electronic Packaging Technology & High Density Packaging, 2009. ICEPT-HDP'09. International Conference on. (2009).
[33]W. H. Teh, D. Marx, D. Grant, & R. Dudley. Backside infrared interferometric patterned wafer thickness sensing for through-silicon-via (TSV) etch metrology. IEEE transactions on semiconductor manufacturing, 23(3), 419-422. (2010).
[34]M. Motoyoshi. Through-silicon via (TSV). Proceedings of the IEEE, 97(1), 43-48. (2009).
[35]R. E. Hummel. Electronic properties of materials: Springer Science & Business Media. (2011).
[36]R. C. Jaeger, J. C. Suhling, & A. A. Anderson. A [100] silicon stress test chip with optimized piezoresistive sensor rosettes. Paper presented at the Electronic Components and Technology Conference, 1994. Proceedings., 44th. (1994).
[37]J.-Y. Yan, S.-R. Jan, Y.-C. Huang, H.-S. Lan, C. Liu, Y.-H. Huang, B. Hung, K.-T. Chan, M. Huang, & M.-T. Yang. Compact modeling and simulation of TSV with experimental verification. Paper presented at the VLSI Technology, Systems and Application (VLSI-TSA), 2016 International Symposium on. (2016).
[38]F. P. Incropera, A. S. Lavine, T. L. Bergman, & D. P. DeWitt. Fundamentals of heat and mass transfer: Wiley. (2007).
[39]H.-H. Lee. Taguchi methods: principles and practices of quality design, Gau Lih Book Co. Ltd., Taiwan. (2000).
[40]H.-H. Lee. Finite element simulations with ANSYS workbench 16: SDC publications. (2015).
[41]J. Wortman, & R. Evans. Young's modulus, shear modulus, and Poisson's ratio in silicon and germanium. Journal of Applied Physics, 36(1), 153-156. (1965).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top